001     910455
005     20230123110703.0
024 7 _ |a 10.22331/q-2022-01-24-630
|2 doi
024 7 _ |a 2128/32136
|2 Handle
024 7 _ |a WOS:000750588700001
|2 WOS
037 _ _ |a FZJ-2022-03844
082 _ _ |a 530
100 1 _ |a Li, Boxi
|0 P:(DE-Juel1)185935
|b 0
|e Corresponding author
245 _ _ |a Pulse-level noisy quantum circuits with QuTiP
260 _ _ |a Wien
|c 2022
|b Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1666867625_27097
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The study of the impact of noise on quantum circuits is especially relevant to guide the progress of Noisy IntermediateScale Quantum (NISQ) computing. In this paper, we address the pulse-level simulation of noisy quantum circuits with the Quantum Toolbox in Python (QuTiP). We introduce new tools in qutip-qip, QuTiP’s quantum information processing package.These tools simulate quantum circuits at the pulse level, leveraging QuTiP’s quantum dynamics solvers and control optimization features. We show how quantum circuits can be compiled on simulated processors, with control pulses acting on a target Hamiltonian that describes the unitary evolution of the physical qubits. Various types of noise can be introduced based on the physical model, e.g., by simulating the Lindblad densitymatrix dynamics or Monte Carlo quantum trajectories. In particular, the user can define environment induced decoherence at the processor level and include noise simulation at the level of control pulses. We illustrate how the DeutschJozsa algorithm is compiled and executed on a superconducting-qubit-based processor, on a spin-chain-based processor and using control optimization algorithms. We also show how to easily reproduce experimental results on cross-talk noise in an ion-based processor, and how a Ramsey experiment can be modeled with Lindblad dynamics. Finally, we illustrate how to integrate these features with other software frameworks.
536 _ _ |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)
|0 G:(DE-HGF)POF4-5221
|c POF4-522
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Ahmed, Shahnawaz
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
700 1 _ |a Saraogi, Sidhant
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Lambert, Neill
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Nori, Franco
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Pitchford, Alexander
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Shammah, Nathan
|0 P:(DE-HGF)0
|b 6
|e Corresponding author
773 _ _ |a 10.22331/q-2022-01-24-630
|g Vol. 6, p. 630 -
|0 PERI:(DE-600)2931392-2
|p 630 -
|t Quantum
|v 6
|y 2022
|x 2521-327X
856 4 _ |u https://juser.fz-juelich.de/record/910455/files/528773_Fulltext.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:910455
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)185935
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-HGF)0
910 1 _ |a 2Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96 Gothenburg, Sweden
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Department of Computer Science, Georgetown University, 3700 O St NW, Washington, DC 20057, United States
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Department of Mathematics, Aberystwyth University, Penglais Campus, Aberystwyth, SY23 3BZ, Wales, United Kingdom
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Unitary Fund, Walnut, California 91789, USA
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5221
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b QUANTUM-AUSTRIA : 2021
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2019-06-12T07:01:21Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2019-06-12T07:01:21Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2019-06-12T07:01:21Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-15
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b QUANTUM-AUSTRIA : 2021
|d 2022-11-15
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)PGI-8-20190808
|k PGI-8
|l Quantum Control
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-8-20190808
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21