000910456 001__ 910456
000910456 005__ 20230123110703.0
000910456 0247_ $$2doi$$a10.1088/1361-6633/ac723c
000910456 0247_ $$2ISSN$$a0034-4885
000910456 0247_ $$2ISSN$$a1361-6633
000910456 0247_ $$2Handle$$a2128/32135
000910456 0247_ $$2pmid$$a35605567
000910456 0247_ $$2WOS$$aWOS:000813328700001
000910456 037__ $$aFZJ-2022-03845
000910456 082__ $$a530
000910456 1001_ $$0P:(DE-Juel1)178646$$aMüller, Matthias M$$b0$$eCorresponding author
000910456 245__ $$aOne decade of quantum optimal control in the chopped random basis
000910456 260__ $$aBristol$$bIOP Publ.$$c2022
000910456 3367_ $$2DRIVER$$aarticle
000910456 3367_ $$2DataCite$$aOutput Types/Journal article
000910456 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1666867558_21995
000910456 3367_ $$2BibTeX$$aARTICLE
000910456 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910456 3367_ $$00$$2EndNote$$aJournal Article
000910456 520__ $$aThe chopped random basis (CRAB) ansatz for quantum optimal control has been proven to be a versatile tool to enable quantum technology applications such as quantum computing, quantum simulation, quantum sensing, and quantum communication. Its capability toencompass experimental constraints—while maintaining an access to the usually trap-free control landscape—and to switch from open-loop to closed-loop optimization (including with remote access—or RedCRAB) is contributing to the development of quantum technology on many different physical platforms. In this review article we present the development, the theoretical basis and the toolbox for this optimization algorithm, as well as an overview of the broad range of different theoretical and experimental applications that exploit this powerfultechnique.
000910456 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000910456 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910456 7001_ $$0P:(DE-HGF)0$$aSaid, Ressa S$$b1
000910456 7001_ $$0P:(DE-HGF)0$$aJelezko, Fedor$$b2
000910456 7001_ $$0P:(DE-Juel1)176280$$aCalarco, Tommaso$$b3$$ufzj
000910456 7001_ $$0P:(DE-HGF)0$$aMontangero, Simone$$b4
000910456 773__ $$0PERI:(DE-600)1361309-1$$a10.1088/1361-6633/ac723c$$gVol. 85, no. 7, p. 076001 -$$n7$$p076001 -$$tReports on progress in physics$$v85$$x0034-4885$$y2022
000910456 8564_ $$uhttps://juser.fz-juelich.de/record/910456/files/2104.07687.pdf$$yOpenAccess
000910456 909CO $$ooai:juser.fz-juelich.de:910456$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000910456 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178646$$aForschungszentrum Jülich$$b0$$kFZJ
000910456 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b1$$kExtern
000910456 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute for Quantum Optics & Center for Integrated Quantum Science and Technology, Universität Ulm, D-89081 Germany$$b1
000910456 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b2$$kExtern
000910456 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute for Quantum Optics & Center for Integrated Quantum Science and Technology, Universität Ulm, D-89081 Germany$$b2
000910456 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176280$$aForschungszentrum Jülich$$b3$$kFZJ
000910456 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b4$$kExtern
000910456 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Padua Quantum Technology Center, Universit`a degli Studi di Padova, I-35131 Italy$$b4
000910456 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000910456 9141_ $$y2022
000910456 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000910456 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910456 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000910456 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2022-11-12$$wger
000910456 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000910456 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000910456 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000910456 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000910456 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-12
000910456 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bREP PROG PHYS : 2021$$d2022-11-12
000910456 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-12
000910456 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-12
000910456 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bREP PROG PHYS : 2021$$d2022-11-12
000910456 920__ $$lno
000910456 9201_ $$0I:(DE-Juel1)PGI-8-20190808$$kPGI-8$$lQuantum Control$$x0
000910456 980__ $$ajournal
000910456 980__ $$aVDB
000910456 980__ $$aUNRESTRICTED
000910456 980__ $$aI:(DE-Juel1)PGI-8-20190808
000910456 9801_ $$aFullTexts