000910457 001__ 910457
000910457 005__ 20230123110703.0
000910457 0247_ $$2doi$$a10.1103/PhysRevA.106.013107
000910457 0247_ $$2ISSN$$a2469-9926
000910457 0247_ $$2ISSN$$a2469-9942
000910457 0247_ $$2ISSN$$a0556-2791
000910457 0247_ $$2ISSN$$a1050-2947
000910457 0247_ $$2ISSN$$a1094-1622
000910457 0247_ $$2ISSN$$a1538-4446
000910457 0247_ $$2ISSN$$a2469-9934
000910457 0247_ $$2Handle$$a2128/32134
000910457 0247_ $$2WOS$$aWOS:000832482600001
000910457 037__ $$aFZJ-2022-03846
000910457 082__ $$a530
000910457 1001_ $$0P:(DE-HGF)0$$aOshnik, Nimba$$b0
000910457 245__ $$aRobust magnetometry with single nitrogen-vacancy centers via two-step optimization
000910457 260__ $$aWoodbury, NY$$bInst.$$c2022
000910457 3367_ $$2DRIVER$$aarticle
000910457 3367_ $$2DataCite$$aOutput Types/Journal article
000910457 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1666867455_25413
000910457 3367_ $$2BibTeX$$aARTICLE
000910457 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910457 3367_ $$00$$2EndNote$$aJournal Article
000910457 520__ $$aShallow Nitrogen-Vacancy (NV) centers are promising candidates for high-precision sensing applications; these defects, when positioned a few nanometers below the surface, provide an atomic-scale resolution along with substantial sensitivity. However, the dangling bonds and impurities on the diamond surface result in a complex environment which reduces the sensitivity and is unique to each shallow NV center. To avoid the environment’s detrimental effect, we apply feedback-based quantum optimal control. We first show how a direct search can improve the initialization/readout process. In a second step, we optimize microwave pulses for pulsed Optically Detected Magnetic Resonance (ODMR) and Ramsey measurements. Throughout the sensitivity optimizations, we focus on robustness against errors in the control field amplitude. This feature not only protects the protocols’ sensitivity from drifts but also enlarges the sensing volume. The resulting ODMR measurements produce sensitivities below 1µT Hz− 1for an 83% decrease in control power, increasingthe robustness by approximately one third. The optimized Ramsey measurements produce sensitivities below 100 nT Hz giving a two-fold sensitivity improvement. Being on par with typical sensitivities obtained via single NV magnetometry, the complementing robustness of the presented optimization strategy may provide an advantage for other NV-based applications.
000910457 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000910457 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910457 7001_ $$0P:(DE-HGF)0$$aRembold, Phila$$b1
000910457 7001_ $$0P:(DE-Juel1)176280$$aCalarco, Tommaso$$b2$$ufzj
000910457 7001_ $$0P:(DE-HGF)0$$aMontangero, Simone$$b3
000910457 7001_ $$0P:(DE-HGF)0$$aNeu, Elke$$b4
000910457 7001_ $$0P:(DE-Juel1)178646$$aMüller, Matthias$$b5$$ufzj
000910457 773__ $$0PERI:(DE-600)2844156-4$$a10.1103/PhysRevA.106.013107$$gVol. 106, no. 1, p. 013107$$n1$$p013107$$tPhysical review / A$$v106$$x2469-9926$$y2022
000910457 8564_ $$uhttps://juser.fz-juelich.de/record/910457/files/2111.12684.pdf$$yOpenAccess
000910457 8564_ $$uhttps://juser.fz-juelich.de/record/910457/files/PhysRevA.106.013107.pdf$$yOpenAccess
000910457 909CO $$ooai:juser.fz-juelich.de:910457$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000910457 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b0$$kExtern
000910457 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Technische Universität Kaiserslautern, Department of physics, Erwin Schrödinger Strasse, D-67663 Kaiserslautern, Germany$$b0
000910457 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b1$$kExtern
000910457 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Istituto Nazionale di Fisica Nucleare (INFN)$$b1
000910457 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176280$$aForschungszentrum Jülich$$b2$$kFZJ
000910457 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b3$$kExtern
000910457 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Istituto Nazionale di Fisica Nucleare (INFN)$$b3
000910457 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b4$$kExtern
000910457 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Technische Universität Kaiserslautern$$b4
000910457 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178646$$aForschungszentrum Jülich$$b5$$kFZJ
000910457 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000910457 9141_ $$y2022
000910457 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000910457 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-05-04
000910457 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000910457 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000910457 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910457 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-23
000910457 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-23
000910457 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-23
000910457 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-23
000910457 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-23
000910457 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-23
000910457 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer Review$$bASC$$d2022-11-23
000910457 920__ $$lno
000910457 9201_ $$0I:(DE-Juel1)PGI-8-20190808$$kPGI-8$$lQuantum Control$$x0
000910457 980__ $$ajournal
000910457 980__ $$aVDB
000910457 980__ $$aUNRESTRICTED
000910457 980__ $$aI:(DE-Juel1)PGI-8-20190808
000910457 9801_ $$aFullTexts