001     910457
005     20230123110703.0
024 7 _ |a 10.1103/PhysRevA.106.013107
|2 doi
024 7 _ |a 2469-9926
|2 ISSN
024 7 _ |a 2469-9942
|2 ISSN
024 7 _ |a 0556-2791
|2 ISSN
024 7 _ |a 1050-2947
|2 ISSN
024 7 _ |a 1094-1622
|2 ISSN
024 7 _ |a 1538-4446
|2 ISSN
024 7 _ |a 2469-9934
|2 ISSN
024 7 _ |a 2128/32134
|2 Handle
024 7 _ |a WOS:000832482600001
|2 WOS
037 _ _ |a FZJ-2022-03846
082 _ _ |a 530
100 1 _ |a Oshnik, Nimba
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Robust magnetometry with single nitrogen-vacancy centers via two-step optimization
260 _ _ |a Woodbury, NY
|c 2022
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1666867455_25413
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Shallow Nitrogen-Vacancy (NV) centers are promising candidates for high-precision sensing applications; these defects, when positioned a few nanometers below the surface, provide an atomic-scale resolution along with substantial sensitivity. However, the dangling bonds and impurities on the diamond surface result in a complex environment which reduces the sensitivity and is unique to each shallow NV center. To avoid the environment’s detrimental effect, we apply feedback-based quantum optimal control. We first show how a direct search can improve the initialization/readout process. In a second step, we optimize microwave pulses for pulsed Optically Detected Magnetic Resonance (ODMR) and Ramsey measurements. Throughout the sensitivity optimizations, we focus on robustness against errors in the control field amplitude. This feature not only protects the protocols’ sensitivity from drifts but also enlarges the sensing volume. The resulting ODMR measurements produce sensitivities below 1µT Hz− 1for an 83% decrease in control power, increasingthe robustness by approximately one third. The optimized Ramsey measurements produce sensitivities below 100 nT Hz giving a two-fold sensitivity improvement. Being on par with typical sensitivities obtained via single NV magnetometry, the complementing robustness of the presented optimization strategy may provide an advantage for other NV-based applications.
536 _ _ |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)
|0 G:(DE-HGF)POF4-5221
|c POF4-522
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Rembold, Phila
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Calarco, Tommaso
|0 P:(DE-Juel1)176280
|b 2
|u fzj
700 1 _ |a Montangero, Simone
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Neu, Elke
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Müller, Matthias
|0 P:(DE-Juel1)178646
|b 5
|u fzj
773 _ _ |a 10.1103/PhysRevA.106.013107
|g Vol. 106, no. 1, p. 013107
|0 PERI:(DE-600)2844156-4
|n 1
|p 013107
|t Physical review / A
|v 106
|y 2022
|x 2469-9926
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/910457/files/2111.12684.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/910457/files/PhysRevA.106.013107.pdf
909 C O |o oai:juser.fz-juelich.de:910457
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Technische Universität Kaiserslautern, Department of physics, Erwin Schrödinger Strasse, D-67663 Kaiserslautern, Germany
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Istituto Nazionale di Fisica Nucleare (INFN)
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)176280
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Istituto Nazionale di Fisica Nucleare (INFN)
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Technische Universität Kaiserslautern
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)178646
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5221
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2021-05-04
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-23
915 _ _ |a No Peer Review
|0 StatID:(DE-HGF)0020
|2 StatID
|b ASC
|d 2022-11-23
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)PGI-8-20190808
|k PGI-8
|l Quantum Control
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-8-20190808
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21