000910458 001__ 910458
000910458 005__ 20240712113013.0
000910458 0247_ $$2doi$$a10.1021/acsenergylett.2c01883
000910458 0247_ $$2WOS$$aWOS:000898398900001
000910458 037__ $$aFZJ-2022-03847
000910458 082__ $$a333.7
000910458 1001_ $$0P:(DE-HGF)0$$aTian, Jingjing$$b0
000910458 245__ $$aQuantifying the Energy Losses in CsPbI 2 Br Perovskite Solar Cells with an Open-Circuit Voltage of up to 1.45 V
000910458 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2022
000910458 3367_ $$2DRIVER$$aarticle
000910458 3367_ $$2DataCite$$aOutput Types/Journal article
000910458 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1673344537_23592
000910458 3367_ $$2BibTeX$$aARTICLE
000910458 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910458 3367_ $$00$$2EndNote$$aJournal Article
000910458 520__ $$aCsPbI2Br perovskite solar cells (PSCs) have attracted muchinterest because of their thermodynamic stability, relatively stable cubicperovskite phase, and their potential as a top cell for tandem applications.However, the open-circuit voltage (VOC) reported to date is in most cases wellbelow the detailed balance (DB) limit for single-junction PSCs. Here, wedemonstrate that adding lead acetate to the CsPbI2Br precursor allows us tosubstantially reduce losses due to nonradiative recombination. Correspondingchampion devices reach a power conversion efficiency (η) of 16.7% and ahighest VOC value of 1.45 V, which represents 90% of the DB limit for singlejunctionPSCs at a bandgap of 1.89 eV. In order to disentangle thenonradiative recombination loss mechanisms, we quantify the origin of energylosses by calculating the radiative limit of the open-circuit voltage (VOCrad) andthe quasi-Fermi level splitting (QFLS) of perovskite films with and withoutother functional layers. We further analyze the strategies to reduce the residual losses in order to push the efficiency beyond the 90% theoretical limit.
000910458 536__ $$0G:(DE-HGF)POF4-1213$$a1213 - Cell Design and Development (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000910458 536__ $$0G:(DE-HGF)POF4-1212$$a1212 - Materials and Interfaces (POF4-121)$$cPOF4-121$$fPOF IV$$x1
000910458 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910458 7001_ $$0P:(DE-HGF)0$$aZhang, Kaicheng$$b1
000910458 7001_ $$0P:(DE-HGF)0$$aXie, Zhiqiang$$b2
000910458 7001_ $$0P:(DE-HGF)0$$aPeng, Zijian$$b3
000910458 7001_ $$0P:(DE-Juel1)194716$$aZhang, Jiyun$$b4$$ufzj
000910458 7001_ $$0P:(DE-HGF)0$$aOsvet, Andres$$b5
000910458 7001_ $$00000-0001-9952-4207$$aLüer, Larry$$b6
000910458 7001_ $$0P:(DE-Juel1)159457$$aKirchartz, Thomas$$b7
000910458 7001_ $$0P:(DE-Juel1)143905$$aRau, Uwe$$b8
000910458 7001_ $$0P:(DE-Juel1)180778$$aLi, Ning$$b9
000910458 7001_ $$0P:(DE-Juel1)176427$$aBrabec, Christoph J.$$b10$$eCorresponding author
000910458 773__ $$0PERI:(DE-600)2864177-2$$a10.1021/acsenergylett.2c01883$$gp. 4071 - 4080$$p4071 - 4080$$tACS energy letters$$v7$$x2380-8195$$y2022
000910458 8564_ $$uhttps://juser.fz-juelich.de/record/910458/files/Jingjing%20Tian_ACSEnergyLett.2c01883_SI.pdf$$yRestricted
000910458 8564_ $$uhttps://juser.fz-juelich.de/record/910458/files/acsenergylett.2c01883.pdf$$yRestricted
000910458 909CO $$ooai:juser.fz-juelich.de:910458$$pVDB
000910458 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194716$$aForschungszentrum Jülich$$b4$$kFZJ
000910458 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159457$$aForschungszentrum Jülich$$b7$$kFZJ
000910458 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143905$$aForschungszentrum Jülich$$b8$$kFZJ
000910458 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180778$$aForschungszentrum Jülich$$b9$$kFZJ
000910458 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176427$$aForschungszentrum Jülich$$b10$$kFZJ
000910458 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1213$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000910458 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1212$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x1
000910458 9141_ $$y2022
000910458 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000910458 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000910458 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS ENERGY LETT : 2021$$d2022-11-22
000910458 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-22
000910458 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-22
000910458 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-22
000910458 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-22
000910458 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-22
000910458 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-22
000910458 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bACS ENERGY LETT : 2021$$d2022-11-22
000910458 920__ $$lyes
000910458 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000910458 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x1
000910458 980__ $$ajournal
000910458 980__ $$aVDB
000910458 980__ $$aI:(DE-Juel1)IEK-5-20101013
000910458 980__ $$aI:(DE-Juel1)IEK-11-20140314
000910458 980__ $$aUNRESTRICTED
000910458 981__ $$aI:(DE-Juel1)IMD-3-20101013
000910458 981__ $$aI:(DE-Juel1)IET-2-20140314
000910458 981__ $$aI:(DE-Juel1)IET-2-20140314