001     910458
005     20240712113013.0
024 7 _ |a 10.1021/acsenergylett.2c01883
|2 doi
024 7 _ |a WOS:000898398900001
|2 WOS
037 _ _ |a FZJ-2022-03847
082 _ _ |a 333.7
100 1 _ |a Tian, Jingjing
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Quantifying the Energy Losses in CsPbI 2 Br Perovskite Solar Cells with an Open-Circuit Voltage of up to 1.45 V
260 _ _ |a Washington, DC
|c 2022
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1673344537_23592
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a CsPbI2Br perovskite solar cells (PSCs) have attracted muchinterest because of their thermodynamic stability, relatively stable cubicperovskite phase, and their potential as a top cell for tandem applications.However, the open-circuit voltage (VOC) reported to date is in most cases wellbelow the detailed balance (DB) limit for single-junction PSCs. Here, wedemonstrate that adding lead acetate to the CsPbI2Br precursor allows us tosubstantially reduce losses due to nonradiative recombination. Correspondingchampion devices reach a power conversion efficiency (η) of 16.7% and ahighest VOC value of 1.45 V, which represents 90% of the DB limit for singlejunctionPSCs at a bandgap of 1.89 eV. In order to disentangle thenonradiative recombination loss mechanisms, we quantify the origin of energylosses by calculating the radiative limit of the open-circuit voltage (VOCrad) andthe quasi-Fermi level splitting (QFLS) of perovskite films with and withoutother functional layers. We further analyze the strategies to reduce the residual losses in order to push the efficiency beyond the 90% theoretical limit.
536 _ _ |a 1213 - Cell Design and Development (POF4-121)
|0 G:(DE-HGF)POF4-1213
|c POF4-121
|f POF IV
|x 0
536 _ _ |a 1212 - Materials and Interfaces (POF4-121)
|0 G:(DE-HGF)POF4-1212
|c POF4-121
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Zhang, Kaicheng
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Xie, Zhiqiang
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Peng, Zijian
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Zhang, Jiyun
|0 P:(DE-Juel1)194716
|b 4
|u fzj
700 1 _ |a Osvet, Andres
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Lüer, Larry
|0 0000-0001-9952-4207
|b 6
700 1 _ |a Kirchartz, Thomas
|0 P:(DE-Juel1)159457
|b 7
700 1 _ |a Rau, Uwe
|0 P:(DE-Juel1)143905
|b 8
700 1 _ |a Li, Ning
|0 P:(DE-Juel1)180778
|b 9
700 1 _ |a Brabec, Christoph J.
|0 P:(DE-Juel1)176427
|b 10
|e Corresponding author
773 _ _ |a 10.1021/acsenergylett.2c01883
|g p. 4071 - 4080
|0 PERI:(DE-600)2864177-2
|p 4071 - 4080
|t ACS energy letters
|v 7
|y 2022
|x 2380-8195
856 4 _ |u https://juser.fz-juelich.de/record/910458/files/Jingjing%20Tian_ACSEnergyLett.2c01883_SI.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/910458/files/acsenergylett.2c01883.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:910458
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)194716
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)159457
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)143905
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)180778
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)176427
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1213
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1212
|x 1
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS ENERGY LETT : 2021
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-22
915 _ _ |a IF >= 20
|0 StatID:(DE-HGF)9920
|2 StatID
|b ACS ENERGY LETT : 2021
|d 2022-11-22
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-11-20140314
|k IEK-11
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a I:(DE-Juel1)IEK-11-20140314
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-3-20101013
981 _ _ |a I:(DE-Juel1)IET-2-20140314
981 _ _ |a I:(DE-Juel1)IET-2-20140314


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21