000910459 001__ 910459
000910459 005__ 20240712084517.0
000910459 0247_ $$2doi$$a10.1002/aenm.202200961
000910459 0247_ $$2ISSN$$a1614-6832
000910459 0247_ $$2ISSN$$a1614-6840
000910459 0247_ $$2Handle$$a2128/32120
000910459 0247_ $$2WOS$$aWOS:000807942800001
000910459 037__ $$aFZJ-2022-03848
000910459 082__ $$a050
000910459 1001_ $$0P:(DE-HGF)0$$aRoger, Julie$$b0
000910459 245__ $$aLaminated Monolithic Perovskite/Silicon Tandem Photovoltaics
000910459 260__ $$aWeinheim$$bWiley-VCH$$c2022
000910459 3367_ $$2DRIVER$$aarticle
000910459 3367_ $$2DataCite$$aOutput Types/Journal article
000910459 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1666850960_25413
000910459 3367_ $$2BibTeX$$aARTICLE
000910459 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910459 3367_ $$00$$2EndNote$$aJournal Article
000910459 520__ $$aPerovskite/silicon tandem photovoltaics have attracted enormous attention in science and technology over recent years. In order to improve the performance and stability of the technology, new materials and processes need to be investigated. However, the established sequential layer deposition methods severely limit the choice of materials and accessible device architectures. In response, a novel lamination process that increases the degree of freedom in processing the top perovskite solar cell (PSC) is proposed. The very first prototypes of laminated monolithic perovskite/silicon tandem solar cells with stable power output efficiencies of up to 20.0% are presented. Moreover, laminated single-junction PSCs are on par with standard sequential layer deposition processed devices in the same architecture. The numerous advantages of the lamination process are highlighted, in particular the opportunities to engineer the perovskite morphology, which leads to a reduction of non-radiative recombination losses and and an enhancement in open-circuit voltage (Voc). Laminated PSCs exhibit improved stability by retaining their initial efficiency after 1-year aging and show good thermal stability under prolonged illumination at 80 °C. This lamination approach enables the research of new architectures for perovskite-based photovoltaics and paves a new route for processing monolithic tandem solar cells even with a scalable lamination process.
000910459 536__ $$0G:(DE-HGF)POF4-1213$$a1213 - Cell Design and Development (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000910459 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910459 7001_ $$0P:(DE-HGF)0$$aSchorn, Luisa K.$$b1
000910459 7001_ $$0P:(DE-HGF)0$$aHeydarian, Minasadat$$b2
000910459 7001_ $$0P:(DE-HGF)0$$aFarag, Ahmed$$b3
000910459 7001_ $$0P:(DE-HGF)0$$aFeeney, Thomas$$b4
000910459 7001_ $$0P:(DE-HGF)0$$aBaumann, Daniel$$b5
000910459 7001_ $$0P:(DE-HGF)0$$aHu, Hang$$b6
000910459 7001_ $$00000-0002-6186-4772$$aLaufer, Felix$$b7
000910459 7001_ $$0P:(DE-Juel1)169946$$aDuan, Weiyuan$$b8
000910459 7001_ $$0P:(DE-Juel1)130233$$aDing, Kaining$$b9
000910459 7001_ $$0P:(DE-Juel1)130263$$aLambertz, Andreas$$b10
000910459 7001_ $$00000-0002-9604-3405$$aFassl, Paul$$b11
000910459 7001_ $$aWorgull, Matthias$$b12
000910459 7001_ $$0P:(DE-HGF)0$$aPaetzold, Ulrich W.$$b13$$eCorresponding author
000910459 773__ $$0PERI:(DE-600)2594556-7$$a10.1002/aenm.202200961$$gVol. 12, no. 27, p. 2200961 -$$n27$$p2200961 -$$tAdvanced energy materials$$v12$$x1614-6832$$y2022
000910459 8564_ $$uhttps://juser.fz-juelich.de/record/910459/files/Advanced%20Energy%20Materials%20-%202022%20-%20Roger%20-%20Laminated%20Monolithic%20Perovskite%20Silicon%20Tandem%20Photovoltaics.pdf$$yOpenAccess
000910459 909CO $$ooai:juser.fz-juelich.de:910459$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000910459 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169946$$aForschungszentrum Jülich$$b8$$kFZJ
000910459 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130233$$aForschungszentrum Jülich$$b9$$kFZJ
000910459 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130263$$aForschungszentrum Jülich$$b10$$kFZJ
000910459 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1213$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000910459 9141_ $$y2022
000910459 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000910459 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000910459 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-30$$wger
000910459 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000910459 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910459 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ENERGY MATER : 2021$$d2022-11-12
000910459 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000910459 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000910459 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-12
000910459 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-12
000910459 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000910459 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-12
000910459 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000910459 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-12
000910459 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bADV ENERGY MATER : 2021$$d2022-11-12
000910459 920__ $$lyes
000910459 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000910459 9801_ $$aFullTexts
000910459 980__ $$ajournal
000910459 980__ $$aVDB
000910459 980__ $$aUNRESTRICTED
000910459 980__ $$aI:(DE-Juel1)IEK-5-20101013
000910459 981__ $$aI:(DE-Juel1)IMD-3-20101013