001     910466
005     20250129092405.0
024 7 _ |a 10.1088/1748-0221/17/06/C06009
|2 doi
024 7 _ |a WOS:000823617800002
|2 WOS
037 _ _ |a FZJ-2022-03849
082 _ _ |a 610
100 1 _ |a Furletov, S.
|0 P:(DE-Juel1)156247
|b 0
|e Corresponding author
245 _ _ |a Machine learning on FPGA for event selection
260 _ _ |a London
|c 2022
|b Inst. of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1666852966_25413
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Post-print leider nicht verfügbar
520 _ _ |a Real-time data processing is a frontier field in experimental particle physics. The application of FPGAs at the trigger level is used by many current and planned experiments (CMS, LHCb, Belle2, PANDA). Usually they use conventional processing algorithms. LHCb has implemented Machine Learning (ML) elements for real-time data processing with a triggered readout system that runs most of the ML algorithms on a computer farm. The work described in this article aims to test the ML-FPGA algorithms for streaming data acquisition. There are many experiments working in this area and they have a lot in common, but there are many specific solutions for detector and accelerator parameters that are worth exploring further. This report describes the purpose of the work and progress in evaluating the ML-FPGA application.
536 _ _ |a 622 - Detector Technologies and Systems (POF4-622)
|0 G:(DE-HGF)POF4-622
|c POF4-622
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Barbosa, F.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Belfore, L.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Dickover, C.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Fanelli, C.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Furletova, Y.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Jokhovets, L.
|0 P:(DE-Juel1)156472
|b 6
700 1 _ |a Lawrence, D.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Romanov, D.
|0 P:(DE-HGF)0
|b 8
773 _ _ |a 10.1088/1748-0221/17/06/C06009
|g Vol. 17, no. 06, p. C06009 -
|0 PERI:(DE-600)2235672-1
|n 06
|p C06009
|t Journal of Instrumentation
|v 17
|y 2022
|x 1748-0221
856 4 _ |u https://juser.fz-juelich.de/record/910466/files/Furletov_2022_J._Inst._17_C06009.pdf
909 C O |o oai:juser.fz-juelich.de:910466
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)156472
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and Technologies
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-622
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Detector Technologies and Systems
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-18
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J INSTRUM : 2021
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-18
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-4-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21