000910467 001__ 910467
000910467 005__ 20250129092405.0
000910467 0247_ $$2doi$$a10.1126/sciadv.abp8483
000910467 0247_ $$2Handle$$a2128/32122
000910467 0247_ $$2pmid$$a35857519
000910467 0247_ $$2WOS$$aWOS:000826385700037
000910467 037__ $$aFZJ-2022-03850
000910467 082__ $$a500
000910467 1001_ $$00000-0002-1321-7677$$aLehmkuhl, Sören$$b0$$eCorresponding author
000910467 245__ $$aRASER MRI: Magnetic resonance images formed spontaneously exploiting cooperative nonlinear interaction
000910467 260__ $$aWashington, DC [u.a.]$$bAssoc.$$c2022
000910467 3367_ $$2DRIVER$$aarticle
000910467 3367_ $$2DataCite$$aOutput Types/Journal article
000910467 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1666860356_25413
000910467 3367_ $$2BibTeX$$aARTICLE
000910467 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910467 3367_ $$00$$2EndNote$$aJournal Article
000910467 520__ $$aThe spatial resolution of magnetic resonance imaging (MRI) is limited by the width of Lorentzian point spread functions associated with the transverse relaxation rate 1/T2*. Here, we show a different contrast mechanism in MRI by establishing RASER (radio-frequency amplification by stimulated emission of radiation) in imaged media. RASER imaging bursts emerge out of noise and without applying radio-frequency pulses when placing spins with sufficient population inversion in a weak magnetic field gradient. Small local differences in initial population in-version density can create stronger image contrast than conventional MRI. This different contrast mechanism is based on the cooperative nonlinear interaction between all slices. On the other hand, the cooperative nonlinear interaction gives rise to imaging artifacts, such as amplitude distortions and side lobes outside of the imaging domain. Contrast mechanism and artifacts are explored experimentally and predicted by simulations on the basis of a proposed RASER MRI theor
000910467 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000910467 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910467 7001_ $$00000-0003-3554-8888$$aFleischer, Simon$$b1
000910467 7001_ $$00000-0001-6813-7458$$aLohmann, Lars$$b2
000910467 7001_ $$00000-0002-7194-002X$$aRosen, Matthew S.$$b3
000910467 7001_ $$00000-0002-8745-8801$$aChekmenev, Eduard Y.$$b4
000910467 7001_ $$00000-0002-0892-6399$$aAdams, Alina$$b5
000910467 7001_ $$00000-0001-6779-9978$$aTheis, Thomas$$b6$$eCorresponding author
000910467 7001_ $$0P:(DE-Juel1)133861$$aAppelt, Stephan$$b7$$eCorresponding author
000910467 773__ $$0PERI:(DE-600)2810933-8$$a10.1126/sciadv.abp8483$$gVol. 8, no. 28, p. eabp8483$$n28$$peabp8483$$tScience advances$$v8$$x2375-2548$$y2022
000910467 8564_ $$uhttps://juser.fz-juelich.de/record/910467/files/sciadv.abp8483.pdf$$yOpenAccess
000910467 909CO $$ooai:juser.fz-juelich.de:910467$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000910467 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133861$$aForschungszentrum Jülich$$b7$$kFZJ
000910467 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000910467 9141_ $$y2022
000910467 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000910467 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000910467 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000910467 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-30
000910467 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910467 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-30
000910467 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI ADV : 2021$$d2022-11-08
000910467 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-08
000910467 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-08
000910467 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-09-20T13:50:30Z
000910467 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-09-20T13:50:30Z
000910467 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-09-20T13:50:30Z
000910467 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-08
000910467 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-08
000910467 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-08
000910467 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-08
000910467 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2022-11-08
000910467 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-08
000910467 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bSCI ADV : 2021$$d2022-11-08
000910467 920__ $$lno
000910467 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
000910467 9801_ $$aFullTexts
000910467 980__ $$ajournal
000910467 980__ $$aVDB
000910467 980__ $$aUNRESTRICTED
000910467 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000910467 981__ $$aI:(DE-Juel1)PGI-4-20110106