| Hauptseite > Publikationsdatenbank > RASER MRI: Magnetic resonance images formed spontaneously exploiting cooperative nonlinear interaction > print |
| 001 | 910467 | ||
| 005 | 20250129092405.0 | ||
| 024 | 7 | _ | |a 10.1126/sciadv.abp8483 |2 doi |
| 024 | 7 | _ | |a 2128/32122 |2 Handle |
| 024 | 7 | _ | |a 35857519 |2 pmid |
| 024 | 7 | _ | |a WOS:000826385700037 |2 WOS |
| 037 | _ | _ | |a FZJ-2022-03850 |
| 082 | _ | _ | |a 500 |
| 100 | 1 | _ | |a Lehmkuhl, Sören |0 0000-0002-1321-7677 |b 0 |e Corresponding author |
| 245 | _ | _ | |a RASER MRI: Magnetic resonance images formed spontaneously exploiting cooperative nonlinear interaction |
| 260 | _ | _ | |a Washington, DC [u.a.] |c 2022 |b Assoc. |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1666860356_25413 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a The spatial resolution of magnetic resonance imaging (MRI) is limited by the width of Lorentzian point spread functions associated with the transverse relaxation rate 1/T2*. Here, we show a different contrast mechanism in MRI by establishing RASER (radio-frequency amplification by stimulated emission of radiation) in imaged media. RASER imaging bursts emerge out of noise and without applying radio-frequency pulses when placing spins with sufficient population inversion in a weak magnetic field gradient. Small local differences in initial population in-version density can create stronger image contrast than conventional MRI. This different contrast mechanism is based on the cooperative nonlinear interaction between all slices. On the other hand, the cooperative nonlinear interaction gives rise to imaging artifacts, such as amplitude distortions and side lobes outside of the imaging domain. Contrast mechanism and artifacts are explored experimentally and predicted by simulations on the basis of a proposed RASER MRI theor |
| 536 | _ | _ | |a 899 - ohne Topic (POF4-899) |0 G:(DE-HGF)POF4-899 |c POF4-899 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Fleischer, Simon |0 0000-0003-3554-8888 |b 1 |
| 700 | 1 | _ | |a Lohmann, Lars |0 0000-0001-6813-7458 |b 2 |
| 700 | 1 | _ | |a Rosen, Matthew S. |0 0000-0002-7194-002X |b 3 |
| 700 | 1 | _ | |a Chekmenev, Eduard Y. |0 0000-0002-8745-8801 |b 4 |
| 700 | 1 | _ | |a Adams, Alina |0 0000-0002-0892-6399 |b 5 |
| 700 | 1 | _ | |a Theis, Thomas |0 0000-0001-6779-9978 |b 6 |e Corresponding author |
| 700 | 1 | _ | |a Appelt, Stephan |0 P:(DE-Juel1)133861 |b 7 |e Corresponding author |
| 773 | _ | _ | |a 10.1126/sciadv.abp8483 |g Vol. 8, no. 28, p. eabp8483 |0 PERI:(DE-600)2810933-8 |n 28 |p eabp8483 |t Science advances |v 8 |y 2022 |x 2375-2548 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/910467/files/sciadv.abp8483.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:910467 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)133861 |
| 913 | 1 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF4-890 |0 G:(DE-HGF)POF4-899 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-800 |4 G:(DE-HGF)POF |v ohne Topic |x 0 |
| 914 | 1 | _ | |y 2022 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-30 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-30 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-01-30 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-01-30 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SCI ADV : 2021 |d 2022-11-08 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-08 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-08 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-09-20T13:50:30Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-09-20T13:50:30Z |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2021-09-20T13:50:30Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-08 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-08 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-08 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-08 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2022-11-08 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-08 |
| 915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b SCI ADV : 2021 |d 2022-11-08 |
| 920 | _ | _ | |l no |
| 920 | 1 | _ | |0 I:(DE-Juel1)ZEA-2-20090406 |k ZEA-2 |l Zentralinstitut für Elektronik |x 0 |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)ZEA-2-20090406 |
| 981 | _ | _ | |a I:(DE-Juel1)PGI-4-20110106 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|