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a b s t r a c t 

Neurotransmitter receptors modulate signaling between neurons. Thus, neurotransmitter receptors and transporters play a key role in shaping brain function. Due 
to the lack of comprehensive neurotransmitter receptor/transporter density datasets, microarray gene expression measuring mRNA transcripts is often used as a 
proxy for receptor densities. In the present report, we comprehensively test the spatial correlation between gene expression and protein density for a total of 27 
neurotransmitter receptors, receptor binding-sites, and transporters across 9 different neurotransmitter systems, using both PET and autoradiography radioligand- 
based imaging modalities. We find poor spatial correspondences between gene expression and density for all neurotransmitter receptors and transporters except 
four single-protein metabotropic receptors (5-HT 1 A , CB 1 , D 2 , and MOR). These expression-density associations are related to gene differential stability and can vary 
between cortical and subcortical structures. Altogether, we recommend using direct measures of receptor and transporter density when relating neurotransmitter 
systems to brain structure and function. 
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. Introduction 

Neurotransmitter receptors and transporters support synaptic com-
unication, regulating signal transmission from neuron to neuron. As

uch, regional variation of receptor and transporter distributions shapes
he functional specialization of the brain ( Froudist-Walsh et al., 2021;
oulas et al., 2021; Palomero-Gallagher and Zilles, 2019; Shine, 2019;
uárez et al., 2020; Zilles and Palomero-Gallagher, 2017 ). Recent stud-
es have investigated how receptor information can tune computation
odels, and how receptors, as well as excitatory-inhibitory ratio, are

elated to neurodevelopment, cognition, neural dynamics, and disease
 Deco et al., 2020; Hoftman et al., 2018; Larsen et al., 2021; Preller
t al., 2018; Shine et al., 2019 ). However, due to the lack of com-
rehensive neurotransmitter receptor and transporter density datasets
open-source or otherwise), receptor/transporter densities are often sub-
tituted with microarray gene expression from the Allen Human Brain
tlas (AHBA) ( Hawrylycz et al., 2012 ), under the assumption that lev-
ls of gene expression are correlated with cell surface protein abundance
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Despite the frequent use of receptor/transporter densities with gene
xpression, the assumed topographical correlation between gene expres-
ion and receptor/transporter density has yet to be comprehensively and
ormally tested across multiple neurotransmitter systems and imaging
odalities. Indeed, there are several reasons gene expression may not be

orrelated with receptor density. First, microarray gene expression mea-
ures the outcome of gene transcription and the abundance of mRNA,
ot levels of protein. Importantly, levels of mRNA and protein are of-
en not correlated, even within the same tissue ( Mühleisen et al., 2021;
chwanhäusser et al., 2011 ). Second, several steps are involved between
rotein translation and expression of the receptor/transporter on the
ell surface, including post-translational modifications, protein folding,
nd reaching a designated cellular target. Variations in the activity of
hese processes will affect receptor/transporter density. Additionally, in
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f  
he case of receptors and transporters that are expressed far from the
ell nucleus, there is a spatial mismatch between levels of gene expres-
ion and protein abundance. Third, multiple genes in the Allen Human
rain Atlas show high inter-subject variability, indicating the possible
nreliability of such group-averaged expression levels. Fourth, the con-
ordance between gene expression and protein density may not be spa-
ially homogeneous in the brain. Altogether, a comprehensive study
apping receptor/transporter densities and gene expression levels is
ecessary to determine whether neurotransmitter receptors and trans-
orters show expression-density associations in the human cortex. 

Whether AHBA-derived gene expression can predict neurotransmit-
er receptor densities across the cortex was first formally tested by
izzo et al. (2014) . Rizzo et al.f ̃ound a close relationship between
TR1A gene expression and 5-HT 1 A PET tracer affinity, but no relation-

hip between opioid receptor gene expression (mu, kappa, and delta)
nd [ 11 C]diprenorphine, a PET tracer that binds to all three opioid re-
eptor subtypes. This served as an initial indication that the topographic
elationship between microarray gene expression and receptor density
s more complex than appreciated by the neuroimaging field. Future
tudies then tested specific receptor systems (i.e. serotonin ( Beliveau
t al., 2017; Komorowski et al., 2017 ) and GABA A ( Nørgaard et al.,
021 )), and found that gene expression was not always a good pre-
ictor of receptor density. With recently available multisystem recep-
or density datasets from both autoradiography ( Zilles and Palomero-
allagher, 2017 ) and PET ( Dukart et al., 2021; Hansen et al., 2021 ), as
ell as a better understanding of how to best process gene expression
ata from the Allen Human Brain Atlas ( Arnatkevi či ū t ė et al., 2019;
arkello et al., 2021 ), a comprehensive account for how gene expres-

ion and receptor density relate to one another across multiple neuro-
ransmitter systems and imaging modalities is possible ( Murga š et al.,
022 ). 

Here we investigate whether microarray gene expression can be
sed to estimate neurotransmitter receptor/transporter densities in the
ortex. To measure gene expression levels, we use the Allen Human
rain Atlas that code for specific neurotransmitter receptors or trans-
orters ( Hawrylycz et al., 2012; Markello et al., 2021 ). Additionally, we
se both positron emission tomography (PET)- and autoradiography-
erived measures of neurotransmitter receptor densities for a total
f 27 neurotransmitter receptors and transporters across 9 different
eurotransmitter systems ( Aghourian et al., 2017; Bedard et al., 2019;
eliveau et al., 2017; Ding et al., 2010; DuBois et al., 2016; Dukart
t al., 2018; Gallezot et al., 2010; Hillmer et al., 2016; Kaller et al.,
017; Kantonen et al., 2020; Naganawa et al., 2021; Nørgaard et al.,
021; Normandin et al., 2015; Parker et al., 2015; Sandiego et al., 2015;
avli et al., 2012; Smart et al., 2019; Zilles and Palomero-Gallagher,
017 ). To ensure results are not biased by methodological choices,
e repeat our analyses using RNAseq data, in a separate parcellation

esolution, and use a conservative spatial autocorrelation-preserving
ull model ( Alexander-Bloch et al., 2018; Markello and Misic, 2021 ).
e find that measures of gene expression can generally not be used

s a proxy for receptor nor transporter density except for a select
ew neurotransmitter receptors: 5-HT 1 A (serotonin), D 2 (dopamine),
nd MOR (opioid). Finally, we provide evidence that the link be-
ween receptor/transporter density and gene expression is related to
nter-subject genetic variability. 

. Results 

The present report uses the following three datasets to assess the
ene expression-protein density relationship for 27 receptors and trans-
orters: (1) the Allen Human Brain Atlas, which remains the most spa-
ially comprehensive dataset measuring human brain gene expression
 Hawrylycz et al., 2012 ), (2) a PET atlas which, to our knowledge, is the
ost extensive collection of open-access receptor and transporter den-

ities in the brain ( Hansen et al., 2021 ), and (3) the autoradiography
ataset from Zilles and Palomero-Gallagher (2017) which is the only
2 
ulti-receptor-system autoradiography dataset and the most spatially
pecific mapping of receptors in the human brain. 

ene expression-protein density correspondence 

Using the group-averaged healthy control PET-derived neurotrans-
itter receptor and transporter densities, we find that in many cases,

here is no close correspondence between receptor density and receptor
ene expression ( Fig. 1 ; for results using RNAseq data, see Fig. S1). In-
eed, only seven proteins (5-HT 1 A , 5-HT 2 A , CB 1 , D 2 , H 3 , M 1 , MOR) show
ignificant (one-tailed 𝑝 spin < 0 . 05 ) and large ( 𝑟 > 0 . 5 ) relationships with
he expression of their corresponding genes ( HTR1A, HTR2A, CNR1,

RD2, HRH3, CHRM1, OPRM1 , respectively). Similarly, using the au-
oradiography dataset, we find that in almost all cases, gene expression
s a poor approximator of neurotransmitter receptor density ( Fig. 2 ; for
esults across three laminar layers, see Fig. S2, and for results using
NAseq data, see Fig. S3). We again find a close correspondence be-

ween 5-HT 1 A and the expression of HTR1A ( 𝑟 = 0 . 80 , 𝑝 spin = 0 . 0003 ).
owever, unlike what was observed with the PET dataset, M 1 does not

how any correlations with CHRM1 . Finally, we note that some gene-
eceptor pairs show significant but low ( 𝑟 < 0 . 5 ) expression-density cor-
elations, namely: HTR4 –5-HT 4 (PET), CHRM3 –M 3 (autoradiography),
nd ADRA2A –𝛼2 (autoradiography). 

To ensure results are not influenced by the choice of brain parcel-
ation, we repeated the PET analyses in a finer parcellation of 111 left
emisphere cortical regions (Fig. S4; ( Cammoun et al., 2012 )). At this
igher resolution, we find that only 5-HT 1 A , CB 1 , D 2 , and MOR still show
lose correspondence with their associated genes. H 3 is no longer sig-
ificantly correlated with HRH3 ( 𝑟 = 0 . 47 , 𝑝 spin = 0 . 13 ), M 1 and 5-HT 2 A
re significantly correlated with their associated genes, although to a
esser degree ( 𝑟 = 0 . 38 , 𝑝 spin = 0 . 005 and 𝑟 = 0 . 38 , 𝑝 spin = 0 . 013 , respec-
ively). 5-HT 4 is now better correlated with HTR4 than before ( 𝑟 = 0 . 54 ,
 spin = 0 . 003 ), and mGluR 5 is now significantly correlated with GRM5 ,
lthough not strongly ( 𝑟 = 0 . 39 , 𝑝 spin = 0 . 008 ). The presence of an ad-
itional significant correlation (mGluR 5 ) and an improved correlation
5-HT 4 ) suggests that a finer parcellation (alongside more precise mea-
urements) may provide a more optimistic account of the relationship
etween gene expression and receptor density. Altogether, 5-HT 1 A , CB 1 ,
 2 , and MOR show stable and high expression-density correspondence
cross both spatial scales and imaging modalities. The edge-cases (i.e. 5-
T 1 B , 5-HT 2 A , 5-HT 4 , H 3 , M 1 , M 3 , mGluR 5 , 𝛼2 ) may represent receptors
here there is a biologically close relationship between gene transcrip-

ion and protein abundance, but due to measurement error or individual
ariability, receptor density cannot be adequately predicted by AHBA
ene expression. 

Next, we consider whether gene expression and receptor densities
how similar association patterns in the subcortex ( Fig. 3 ). We focus on
fteen subcortical structures, including the brainstem and seven pairs of
omologous brain regions. Note that we separate subcortical and cor-
ical analyses in the main text, but the combined model is shown in
ig. S8. Tracers used in the subcortex are the same as those used in
he cortex except for D 2 , where [ 11 C]raclopride is used in the subcor-
ex in favour of [ 11 C]FLB-457 ( Dagher and Palomero-Gallagher, 2020 ).
nlike in the cortex, we find a high correlation between D 1 subcortical
ene expression and receptor density ( 𝑟 = 0 . 87 , 𝑝 < . 001 ), which may be
eflective of nonspecific D 1 binding in the cortex ( Ekelund et al., 2007 ).
e also find a high expression-density correlation for VAChT, which
ay reflect the greater transporter availability in the subcortex. Mean-
hile, receptors with high expression-density associations in the cortex
enerally show similarly high relationships in the subcortex, with the ex-
eption of MOR for which the expression-density relationship decreases
 𝑟 = 0 . 85 in the cortex, 𝑟 = 0 . 53 in the subcortex) despite greater receptor
vailability. Altogether, we find preliminary evidence that the relation-
hip between gene expression and receptor density may vary between
he cortex and subcortex, although this analysis should be replicated in
uture work using a finer parcellation and more sensitive measurements.
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Fig. 1. PET-derived receptor/transporter densities versus gene expression | PET tracer maps for 18 different neurotransmitter receptors and transports reveal 
that the density of only five neurotransmitter receptors correlates significantly with the expression of their corresponding gene (Spearman 𝑟 ), across 34 Desikan 
Killiany regions in the left cortex. Yellow scatter plots indicate significant ( 𝑝 spin < 0 . 05 ) and large ( 𝑟 > 0 . 5 ) expression-density correspondence. Receptor density and 
gene expression is z-scored. 
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otential mechanisms underlying low associations 

We next sought to understand why certain neurotransmitter recep-
ors demonstrate expression-density correspondence, whereas other re-
eptors, and all transporters, show no expression-density correspon-
ence. Since group-averaged measures of gene expression and recep-
or/transporter density come from disjoint samples of participants, we
ypothesized that inter-subject variability might distort the relationship
etween group-averaged gene expression and receptor/transporter den-
ities. To test this hypothesis, we used each gene’s differential stabil-
ty, a measure of gene expression variability across the six donors (see
ethods for details ( Hawrylycz et al., 2015 )). Fig. 4 a reveals that genes
ith greater differential stability, and therefore less inter-subject vari-
nce, are more correlated with PET-derived receptor density (Spearman
 = 0 . 84 , 𝑝 = 1 . 9 × 10 −6 ; for results in the subcortex, see Fig. S5). When
e repeat the analyses in the autoradiography dataset, we find a sim-

lar trend (Spearman 𝑟 = 0 . 62 , 𝑝 = . 003 ; Fig. 4 b). This suggests that re-
eptor expression-density correlations are related to inter-subject vari-
bility. This may be due to genetic or non-genetic population variance
nd/or measurement factors such as variations in signal-to-noise ratios
mong probes or excessively spatially homogeneous patterns of gene
3 
xpression. Interestingly, there is a positive correlation between ge-
etic differential stability and the correspondence between PET- and
utoradiography-derived receptor densities, which may suggest that this
esult is more broadly related to population variance rather than only
nter-subject genetic variability or methodological error (although note
his analysis is limited to the six receptors with both PET and autoradio-
raphy measurements; Fig. S6). 

A second reason that neurotransmitter receptors might demonstrate
ow expression-density correspondence is that the protein is expressed
t the synapse, which may be far from the cell body where gene tran-
cription occurs. In this case, we would not observe a close regional
xpression-density relationship, but might find that high protein den-
ity in a brain region can be predicted by high mRNA levels in struc-
urally connected brain regions. To test this, we correlate regional re-
eptor density with the average gene expression in structurally con-
ected regions, weighted by the structural connection ( Hansen et al.,
022; Shafiei et al., 2022b; 2020 ). We repeat this using both PET and
utoradiography datasets and find that receptors that already show high
xpression-density correlations also show high correlations between re-
ional receptor density and neighbouring gene expression (Fig. S7).
owever, these relationships are not significant when controlling for



J.Y. Hansen, R.D. Markello, L. Tuominen et al. NeuroImage 264 (2022) 119671 

-2 -1
AMPA density

-3

-2

-1

0

1

2
G

RI
A

1 
ex

pr
es

si
on

-2 -1
GABAA density

-3

-2

-1

0

1

2

G
A

BR
A

1 
ex

pr
es

si
on

-2 -1
GABAA/BZ density

-3

-2

-1

0

1

2
G

A
BR

A
1 

ex
pr

es
si

on

-2 -1
GABAB density

-3

-2

-1

0

1

2

G
A

BB
R1

 e
xp

re
ss

io
n

-3 -2 -1-4
-3
-2
-1
0
1
2

CH
RM

1 
ex

pr
es

si
on

-2-3

-2

-1

0

1

2
CH

RM
2 

ex
pr

es
si

on

-2-3

-2

-1

0

1

2

CH
RM

3 
ex

pr
es

si
on

-1-4
-3
-2
-1
0
1
2

CH
RN

A
4 

ex
pr

es
si

on

-2 -1
5-HT1A density

-3
-2
-1
0
1
2
3
H

TR
1A

 e
xp

re
ss

io
n

-3 -2 -1-4
-3
-2
-1
0
1
2

H
TR

2A
 e

xp
re

ss
io

n

-2 -1-4
-3
-2
-1
0
1
2

D
RD

1 
ex

pr
es

si
on

0 1 2 0 1 2

0 1 2

3

0 1 2

0 1 2

0 1 2 0 1 2

0 1 2

0 1 2 30 2 4 0 2 4

-2
GABAA density

0 2-3

-2

-1

0

1

2

G
A

BR
G

2 
ex

pr
es

si
on

-2
GABAA density

0 2
-2
-1

0

1
2

3

G
A

BR
B2

 e
xp

re
ss

io
n

GABAA/BZ density
0 2-3

-2

-1

0

1

2

G
A

BR
G

2 
ex

pr
es

si
on

-2
GABAA/BZ density

0 2-2
-2
-1

0

1
2

3

G
A

BR
B2

 e
xp

re
ss

io
n

-2
GABAB density

0 2

-2

0

2

G
A

BB
R2

 e
xp

re
ss

io
n

-4

r = 0.80, pspin = 0.0003

-2

-1

0

1

2

G
RI

K2
 e

xp
re

ss
io

n

-2 -1
kainate density

0 1-2 -1
NMDA density

0 1 2

G
RI

N
1 

ex
pr

es
si

on

-2

-1

0

1

2

-1 0 1 2CH
RN

B2
 e

xp
re

ss
io

n

-2

-1

0

1

2

-2 -1A
D

RA
1A

 e
xp

re
ss

io
n

0 1 20 2 4 A
D

RA
2A

 e
xp

re
ss

io
n

-2

0

2

-2

0

2

r = 0.38, pspin = 0.313 r = -0.27, pspin = 0.761 r = 0.47, pspin = 0.123 r = 0.35, pspin = 0.704 r = 0.23, pspin = 0.859

r = 0.46, pspin = 0.530 r = 0.05, pspin = 0.895 r = 0.07, pspin = 0.895 r = 0.29, pspin = 0.895 r = 0.32, pspin = 0.184

r = 0.19, pspin = 0.716r = 0.32, pspin = 0.048r = -0.11, pspin = 0.659r = 0.04, pspin = 0.415r = 0.19, pspin = 0.184

r = 0.25, pspin = 0.716 r = 0.14, pspin = 0.288 r = 0.45, pspin p,50.0-=r700.0= spin = 0.587

r = -0.11, pspin = 0.591

Fig. 2. Autoradiography-derived receptor densities versus gene expression | Autoradiographs for 15 different neurotransmitter receptors reveal that only 5- 
HT 1 A and 𝛼2 correlate significantly with the expression of their corresponding genes ( HTR1A and ADRA2A , respectively), across 33 Desikan Killiany regions in the 
left cortex (Spearman 𝑟 ). Yellow scatter plots indicate significant ( 𝑝 spin < 0 . 05 ) and large ( 𝑟 > 0 . 5 ) expression-density correspondence. Receptor density and gene 
expression is z-scored. 
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patial autocorrelation. In other words, we do not find evidence that
RNA levels in neighbouring brain regions relate to protein density.
ne exception is the acetylcholine transporter, VAChT, which shows an

mproved, and significant, correlation between regional transporter den-
ity and neighbouring gene expression ( 𝑟 = 0 . 46 , 𝑝 spin = 0 . 04 , previously
 = 0 . 15 , 𝑝 spin = 0 . 20 ). 

xtending the analysis from single genes to pathways 

We conduct a final analysis that asks whether other genes in a bio-
hemical pathway may be better predictors of receptor density than the
eceptor-coding gene itself. To test this, we use the Panther classification
ystem ( https://pantherdb.org/ ) to extract lists of genes coding for re-
4 
eptors within a protein pathway ( Mi et al., 2012; Patania et al., 2019 ).
pecifically, to maximize the number of genes, we search for each neuro-
ransmitter name (e.g. “dopamine ”) and correlate each receptor within
he neurotransmitter class (e.g. D 1 and D 2 receptors under “dopamine ”)
ith each gene in this list. We show our results in Table S6: broadly,
fter apply spin tests and FDR correction, we find that in most cases, re-
eptors with poor expression-density correspondence do not show con-
istent improvement in expression-density correlation with other genes
n the neurotransmitter pathway. Indeed, alternative significantly corre-
ated genes only appear for receptors that already show high expression-
ensity correlation (e.g. MOR, CB 1 , 5-HT 1 A , 5-HT 4 ), and these alterna-
ives can be non-specific (e.g. GNB2 , a gene coding for a G-protein sub-
nit, is significantly correlated with both CB 1 and MOR density). This

https://pantherdb.org/
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Fig. 3. Correspondence between gene expression and receptor/transporter density in the subcortex | PET receptor/transporter densities and microarray gene 
expression were parcellated into 15 subcortical regions and correlated. Points represent brain regions and are coloured by subcortical structure. 
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nalysis can be extended in future work by taking a multivariate ap-
roach, or by using more specific search terms. 

. Discussion 

Understanding how the chemoarchitecture of the brain modulates
he link between structure and function requires accurate and com-
rehensive regional neurotransmitter receptor and transporter profiles.
ere we formally test whether there is a correlation between gene ex-
ression and neurotransmitter receptor/transporter density, for a total
f 27 unique neurotransmitter receptors, receptor binding sites, and
ransporters, from both PET images and autoradiographs. We find that
nly four receptors (5-HT 1 A , CB 1 , D 2 , and MOR) display a robust close
patial correspondence between gene expression levels and receptor
ensities. We therefore conclude that researchers should exercise cau-
ion when using gene expression as a proxy for receptor and transporter
ensities. 

We note that the lack of correlation between protein levels and the
evels of their coding mRNA is not unreasonable as there are many mech-
nisms that may affect the protein-mRNA correlation. First, levels of
RNA detected on the AHBA microarray do not take into account the

ranscript isoforms that can be produced from the same gene, nor the
5 
tability of the resulting mRNA, which are determined by mRNA modi-
cations such as splicing ( Liu et al., 2016; Wang et al., 2009 ). Second,
he proportion of different cell types in a microarray sample may distort
he gene expression-protein density correspondence due to differences
n the proteome and transcriptome, including different splice variant
xpression ( Sharma et al., 2015; Zhang et al., 2014 ). Third, studies in
acteria ( Li et al., 2014 ) and mice ( Jovanovic et al., 2015 ) have demon-
trated that rate of protein synthesis also alters protein levels. Fourth,
rotein buffering dampens the effect of variations in gene expression lev-
ls, including an adaptation of protein turnover through protein degra-
ation, and the modulated activity of protein transport machinery which
etermines the final subcellular localization of the protein ( Battle et al.,
015; Liu et al., 2016; Serdiuk et al., 2019; Yudowski et al., 2006 ). Fifth,
he protein itself may be transported far from the coding mRNA, result-
ng in a spatial discrepancy between mRNA and protein levels. For ex-
mple, the serotonin transporter 5-HTT is predominantly expressed on
eurons innervating the cortex and therefore the majority of the associ-
ted mRNA transcripts are found in the subcortical cell bodies ( Beliveau
t al., 2017; Hoffman et al., 1998; Zhou et al., 1998 ). Altogether, the
ariation in the activity of these processes may contribute to the ob-
erved difference in levels of mRNA expression and protein abundance
f receptors/transporters in the cortex. 
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Fig. 4. Differentially stable genes are more correlated with neurotransmitter receptor density | We find that differential stability, a measure of the vari- 
ability of a gene’s expression across donors, is significantly correlated with gene-receptor Spearman correlations when using (a) PET-derived receptor/transporter 
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Furthermore, the regulatory mechanisms between gene transcription
nd protein expression at the cell surface are not necessarily conserved
ver the lifespan. In the present report, we are unable to thoroughly
est the effects of age because each dataset —although spanning mul-
iple neurotransmitter systems —includes participants of varying ages.
his may contribute to the low correspondence between gene expres-
ion and receptor density. Indeed, some receptors have been shown to
ither increase ( Cuypers et al., 2021 ) or decrease ( Karrer et al., 2019 ) in
ensity with healthy aging. This may be due to general changes in gene
xpression (in which case we would expect high expression-density cor-
espondence throughout the lifespan, despite changes in receptor abun-
ance), or due to changes in the regulatory mechanisms that govern
he pathway between gene transcription and protein expression. How
he link between gene expression and receptor density changes over the
ifespan in both health and disease remains an exciting future research
irection. 

Nonetheless, we do find a small subset of neurotransmitter recep-
ors that demonstrate close gene transcription-receptor density relation-
hips. One possible explanation is rooted in inter-subject variability of
ene expression and receptor densities. Since both receptor densities
nd gene expression are averaged across participants, genes and recep-
ors with low inter-subject variability across the population would be
etter captured by the group-averaged map used in the present analy-
es. This is supported by the fact that neurotransmitter receptor densi-
ies are more correlated with genes that are more stable across donors
 Fig. 4 ). Interestingly, we find evidence that genetic differential stability
ight also reflect the generalizability of receptor density measurements

Fig. S6b). The receptors and genes that show low genetic differential
tability could inform future subject-level studies that focus on individ-
al differences. Alternatively, expression-density correlations could be
riven by the signal-to-noise ratio in the microarray data, or by how
patially homogeneous a gene’s expression is across the cortex (which,
ssuming the presence of random noise, would result in low gene ex-
ression correspondence across donor brains even if the signal-to-noise
atio is high). This is another reason that we recommend researchers
xercise caution when using receptor gene expression, especially if the
ene’s differential stability is low. 

A second nonexclusive explanation is that the steps between gene
ranscription and membrane insertion are potentially more preserved
6 
or specific neurotransmitter receptors. Indeed, the correspondence be-
ween gene expression and receptor density would depend on localiza-
ion of the mRNA due to differences in ribosome and tRNA availability
 Besse and Ephrussi, 2008 ), as well as protein turnover rates at the lo-
ation the receptor is expressed ( Boisvert et al., 2012 ). Additionally,
eceptor systems that are phylogenetically older, involved in functions
hat require rigid stimulus-response relationships, or more fundamental
o the organizational principles of the brain, may demonstrate more ro-
ust translation that manifest as close expression-density associations.
or example, in the mouse cortex, gene expression for certain interneu-
on cell types are closely aligned with gradients of cortical organization
 Fulcher et al., 2019 ). Interestingly, the gene that most recapitulates this
rganizational feature ( Pvalb ) is highly correlated to its corresponding
rotein’s density (parvalbumin; Spearman 𝑟 = 0 . 95 ), whereas Sst —an in-
erneuron marker that is poorly aligned with cortical organization —is
oorly correlated with somatostatin density (Spearman 𝑟 = 0 . 24 , 𝑝 = . 1 )
 Fulcher, 2019 ). 

Altogether, the lack of expression-density correspondence reported
ere may be due to underlying biological mechanisms as well as tech-
ological limitations in measuring gene expression and receptor den-
ity. The question of how receptor gene expression and protein den-
ity relate will hopefully motivate further technological innovation to
llow more spatially and biochemically precise measurements. For ex-
mple, we observe an improvement in expression-density correlations
n the finer parcellation for mGluR 5 and 5-HT 4 , suggesting that closer
orrespondences may be discovered with more spatially specific mea-
urements. Furthermore, we observe higher subcortical correlations for
 1 and VAChT, opening the possibility that expression-density associ-
tions are spatially heterogeneous. More precise measurements would
ake it possible to test whether and how expression-density associa-

ions vary across the cortex. Future studies should measure RNA levels
sing single-cell or single-nucleus sequencing, and compare this to layer-
pecific autoradiography-derived receptor densities. Ideally, future stud-
es will sample gene expression and receptor density in the same partic-
pants, making it possible to account for the effects of inter-individual
ariability on expression-density correspondence. 

Importantly, the reported results are limited to the set of 27 pro-
eins that we studied here. These results should not be extrapolated
o other protein classes and do not preclude exciting work that uses
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HBA-derived microarray gene expression as a proxy for density of pro-
eins involved in other functions such as metabolism, cellular signal-
ng, or synapse formation ( Medel et al., 2022; Shafiei et al., 2022a ).
ontinued validation with open-source protein density datasets is nec-
ssary and increasingly possible thanks to emerging data sharing infras-
ructures and standards ( Dukart et al., 2021; Hansen et al., 2021; Mar-
ins et al., 2021; Norgaard et al., 2022; Zilles and Palomero-Gallagher,
017 ). Furthermore, both PET and autoradiography have specific chal-
enges. For example, PET does not usually directly measure density, is
ensitive to in-scanner motion, and some tracers may demonstrate non-
pecific binding ( Ekelund et al., 2007 ). Meanwhile, autoradiographs
ore directly measure receptor densities but are only acquired post-
ortem and in discrete brain sections ( Zilles et al., 2002b ). The fact

hat PET and autoradiography capture different features of chemoar-
hitecture is highlighted by how PET- and autoradiography-derived re-
eptor density quantification are not always consistent. Of the recep-
ors with measurements from both data modalities, we find that 5-HT 1 A 
nd 𝛼4 𝛽2 are consistent but that D 1 , GABA A , 5-HT 2 , and M 1 show poor
onsistency (Fig. S6a; although note that Beliveau et al. (2017) find
 correlation between mRNA and autoradiography-derived 5-HT 2 den-
ities). Indeed, there is a close relationship between mRNA and PET-
erived M 1 density but no correspondence between mRNA levels or
ET-derived M 1 density and autoradiography-derived density, which
ay indicate that, in this case, the mRNA measurement is more accu-

ate than the autoradiography measurement. Interestingly, 5-HT 1 A and
ABA A show moderate to high expression-density correlations, suggest-

ng that the consistency of density quantification across data modalities
ay be due to low inter-subject variance or fewer gene and protein
odifications (Fig. S6b). These results demonstrate the value of using

omplementary techniques such as PET and autoradiography, but fu-
ure efforts are needed to develop more accurate measures of protein
ensity. 

An alternative approach might be to test whether non receptor-
oding genes serve as better predictors for receptor density. Since re-
eptors act within biochemical pathways, it is possible that other mRNA
ranscripts for proteins within the pathway serve as better predictors
han the receptor-coding gene, especially if the low expression-density
orrespondence is the product of genetic intersubject variability or mea-
urement error. Indeed, gene expression from multiple genes is being
ncreasingly used to infer biological pathways between transcription
nd neuroimaging markers ( Martins et al., 2021; Romero-Garcia et al.,
018 ). A potential follow-up to this study would be to test the correspon-
ence between receptor density and gene expression of proteins within
he neurotransmitter pathway. This study would not be limited to the
nivariate expression-density correlation, but could consider combina-
ions of genes in a multivariate analysis. Although direct protein quan-
ification would be ideal, properly validated gene expression can serve
s a viable alternative when protein density measurements are imprecise
r unavailable. 

Our results build on previous work that explores the expression-
ensity relationship of specific neurotransmitter systems or receptors,
uch as the serotonergic system ( Beliveau et al., 2017; Komorowski
t al., 2017 ), the GABA A receptor ( Nørgaard et al., 2021 ), and the opioid
ystem ( Komorowski et al., 2017; Rizzo et al., 2014 ), using PET and/or
utoradiography-derived density. The present report comprehensively
nvestigates the expression-density correspondence for 27 unique neu-
otransmitter receptors, receptor binding sites, and transporters across
 different neurotransmitter systems using both PET and autoradiogra-
hy measurements. Here we note some consistencies and inconsistencies
cross findings. Consistencies include: (1) high correlation between 5-
T 1 A density and HTR1A expression ( Beliveau et al., 2017; Komorowski
t al., 2017; Rizzo et al., 2014 ), (2) weaker associations for other sero-
onergic receptors ( Beliveau et al., 2017 ), (3) high correlation between
OR and OPRM 1 ( Komorowski et al., 2017 ), and (4) positive correlation

etween GABA A density and 𝛽2 subunit expression, but negative correla-
ion between GABA A density and 𝛾1 subunit expression —although we do
7 
ot find that these relationships are significant after correcting for mul-
iple comparisons ( Nørgaard et al., 2021 ). On the other hand, we find
o association between GABA A density and the expression of 𝛼1 and 𝛾2 
ain channel subunits, unlike that reported in Nørgaard et al. (2021) .
dditionally, Rizzo et al. (2014) find that the PET tracer dipenorphine,
hich binds to all three opioid subtypes ( 𝛿, 𝜅, and 𝜇), is not correlated
ith the expression of any opioid subtype. Meanwhile, we find a strong

orrelation between MOR density and OPRM1 expression, and presume
hat expression-density relationships are specific to single receptors and
ot generalizable across receptors in the same neurotransmitter system.
e note that these inconsistencies are likely related to the gene normal-

zation method, a key processing step with large effects on estimated
ene expression ( Markello et al., 2021 ). 

We close with some methodological considerations when working
ith PET, autoradiography, and gene expression datasets. First, our

onclusions are limited to the scope of each dataset and should not
e interpreted as a general rule-of-thumb that PET/autoradiography
ensity measurements predict protein abundance better than microar-
ay/RNAseq gene transcription. Second, gene expression estimates are
erived from only six post-mortem human brains. Although the Allen
uman Brain Atlas is a state-of-the-art dataset of microarray gene
xpression, more comprehensive datasets are necessary to confirm
ene expression levels. Similarly, autoradiography data were collected
or only three individuals, which inhibits population-level inferences.
hird, measures of neurotransmitter receptor/transporter densities and
ene expression are acquired in different individuals, so we are not able
o make conclusions on the correspondence between gene expression
nd receptor/transporter density in the same cell tissue. Fourth, gene
xpression and receptor data were collected in participants of varying
ges, but effects of age and sex could not be tested. Fifth, due to the rel-
tively coarser resolution of PET, and the incomplete spatial coverage
f autoradiography, main analyses were conducted in a parcellation of
nly 33–34 left hemisphere cortical brain regions. Replication in a finer
arcellation for the PET receptor data do show similar results (Fig. S4),
s well as high receptor density correlation between hemispheres, but
igh resolution whole-brain gene-receptor/transporter analyses should
e conducted in future work. 

In summary, we find that the expression of specific
eceptor/transporter-coding genes can generally not be used to es-
imate neurotransmitter receptor and transporter density. We only find
 reliable correspondence between gene expression and receptor density
or 5-HT 1 A , CB 1 , D 2 , and MOR. Future efforts to map neurotransmitter
eceptor and transporter profiles to brain structure and function should
erify the expression-density association when using microarray gene
xpression in place of receptor and transporter density. 

. Methods 

ata and code availability 

All code and data used to perform the analyses can be found
t https://github.com/netneurolab/hansen _ gene-receptor . The Allen
uman Brain Atlas is available at https://human.brain-map.org/
 Hawrylycz et al., 2012 ). Volumetric PET receptor images can be
ound on neuromaps ( https://netneurolab.github.io/neuromaps/
 Markello et al., 2022 )) and at https://github.com/netneurolab/
ansen _ receptors ( Hansen et al., 2021 ). Autoradiography re-
eptor densities can be found in Supplementary Table 2 of
illes and Palomero-Gallagher (2017) . Structural connectivity data
s collected from the Human Connectome Project, available at
ttps://db.humanconnectome.org/ . 

ET data acquisition 

Volumetric PET images were collected for 18 different neurotrans-
itter receptors and transporters across 9 different neurotransmitter

https://github.com/netneurolab/hansen_gene-receptor
https://human.brain-map.org/
https://netneurolab.github.io/neuromaps/
https://github.com/netneurolab/hansen_receptors
https://db.humanconnectome.org/


J.Y. Hansen, R.D. Markello, L. Tuominen et al. NeuroImage 264 (2022) 119671 

s  

2  

z  

2  

2  

S  

t  

s  

p  

f  

w  

t  

a  

s  

a  

l  

c  

r  

s  

i  

a  

b  

a  

a  

c  

m  

f  

i  

c  

d  

a  

(

A

 

p  

t  

i  

m  

f  

D  

t  

s  

Z  

Z
r  

G  

a  

b  

p  

t  

3  

(  

p  

d  

r  

l  

c

M

 

m  

h  

o  

y  

p  

a  

t  

m  

e  

c  

p
 

A  

e  

(  

Δ  

H  

𝑝  

n  

a  

r  

a  

r
 

d  

c  

T  

i  

(  

s  

t  

w
 

e  

m

𝑥  

w  

o  

e

𝑥  

G  

s  

a  

w
 

t  

(  

a  

d  

m

G

 

n  

g  

r  

i  

m  

c  

e

ystems ( Aghourian et al., 2017; Bedard et al., 2019; Beliveau et al.,
017; Ding et al., 2010; DuBois et al., 2016; Dukart et al., 2018; Galle-
ot et al., 2010; Hillmer et al., 2016; Kaller et al., 2017; Kantonen et al.,
020; Naganawa et al., 2021; Nørgaard et al., 2021; Normandin et al.,
015; Parker et al., 2015; Sandiego et al., 2015; Savli et al., 2012;
mart et al., 2019 ). To protect patient confidentiality, individual par-
icipant maps were averaged within studies before being shared. Each
tudy, the associated receptor/transporter, tracer, number of healthy
articipants, age, and reference with full methodological details can be
ound in Table S1. In all cases, only scans from healthy participants
ere included. Images were acquired using best practice imaging pro-

ocols recommended for each radioligand. Altogether, the images are
n estimate of receptor densities and we therefore refer to the mea-
ured value (i.e. binding potential, tracer distribution volume) simply
s density. PET images were all registered to the MNI-ICBM 152 non-
inear 2009 (version c, asymmetric) template, then parcellated to a par-
ellation with 68 and 219 cortical regions, as well as 15 subcortical
egions, according to the Lausanne atlas ( Cammoun et al., 2012; De-
ikan et al., 2006 ). Receptors and transporters with more than one mean
mage of the same tracer (i.e. 5-HT 1 B , D 2 , mGluR 5 , and VAChT) were
veraged together in a manner that weights each image by the num-
er of participants in the cohort. Tracer images are highly consistent
cross cohorts (see Fig. S1 in Hansen et al. (2021) ). In some cases, im-
ges of multiple tracers for the same receptor were available. In these
ases, we show the tracer with the larger number of participants in the
ain text, but we find consistent results when analyses are repeated

or alternative tracers (Fig. S9). Finally, each tracer map correspond-
ng to each receptor/transporter was z-scored across regions and con-
atenated into a final region ×receptor matrix of relative densities. This
ata was presented and used originally in Hansen et al. (2021) and is
vailable in neuromaps ( https://netneurolab.github.io/neuromaps/ )
 Markello et al., 2022 ). 

utoradiography data acquisition 

In vitro receptor autoradiography data were originally collected and
rocessed as described in Zilles and Palomero-Gallagher (2017) . Fif-
een neurotransmitter receptor densities across 44 cytoarchitectonically
dentified areas in three post-mortem brains were acquired from Supple-
entary Table 2 of Zilles and Palomero-Gallagher (2017) (see Table S2

or a complete list of receptors included in the autoradiography dataset).
etailed information concerning the standard incubation protocols es-

ablished over the last 25 years at Julich Research Centre and neces-
ary for labeling the receptors is provided in Supplementary Table of
illes and Palomero-Gallagher (2017) (see also Palomero-Gallagher and
illes (2018) ; Zilles et al. (2002a,b) ). Note that GABA A and GABA A∕BZ 
efer to the same receptor, but that GABA A∕BZ refers specifically to
ABA A receptors containing the allosteric benzodiazepine binding site,
s opposed to receptors containing only the GABA neurotransmitter
inding site. To best compare PET data analyses with the autoradiogra-
hy dataset, a region-to-region mapping was manually created between
he 44 available cortical regions in the autoradiography dataset and the
4 left hemisphere cortical Desikan Killiany regions. In only one case
the insula) was there no suitable mapping between the autoradiogra-
hy data and the Desikan Killiany atlas. As such, the 44-region autora-
iography atlas was converted to 33 Desikan Killiany left hemisphere
egions. Finally, receptor densities were z-scored and averaged across
aminar layers, to create a single map of receptor densities across the
ortex (for results across three laminar layers, see Fig. S2). 

icroarray gene expression 

Regional microarray expression data were obtained from six post-
ortem brains provided by the Allen Human Brain Atlas (AHBA;
ttp://human.brain-map.org/ ) ( Hawrylycz et al., 2012 ). Since only two
8 
f the six brains included samples from the right hemisphere, main anal-
ses were conducted on the left hemisphere only. All processing was
erformed using the abagen toolbox ( https://github.com/netneurolab/
bagen ( Markello et al., 2021 )). These data were processed and mapped
o parcellated brain regions at 34 and 111 left hemisphere cortical grey
atter nodes according to the Lausanne anatomical atlas ( Cammoun

t al., 2012; Desikan et al., 2006 ). For completeness, data were also par-
ellated to 15 bilateral subcortical regions. Due to the coarse subcortical
arcellation, sufficient probes were available for both hemispheres. 

Microarray probes were reannotated using data provided by
rnatkevi či ū t ė et al. (2019) . A single microarray probe with the high-
st differential stability, Δ𝑆 ( 𝑝 ) , was selected to represent each gene
 Hawrylycz et al., 2015 ), where differential stability was calculated as:

𝑆 ( 𝑝 ) = 

1 (𝑁 

2 

)
𝑁−1 ∑
𝑖 =1 

𝑁 ∑
𝑗= 𝑖 +1 

𝑟 [ 𝐵 𝑖 ( 𝑝 ) , 𝐵 𝑗 ( 𝑝 )] (1)

ere, 𝑟 is Spearman’s rank correlation of the expression of a single probe
 across regions in two donor brains, 𝐵 𝑖 and 𝐵 𝑗 , and 𝑁 is the total
umber of donor brains. Differential stability is the average correlation
cross every pair of donor brains of a probe’s expression. This procedure
etained 20 232 probes, each representing a unique gene. We repeat the
nalyses using alternative probe selection methods and find consistent
esults (Fig. S10). 

Next, samples were assigned to brain regions using MNI coor-
inates generated via non-linear registrations ( https://github.com/
hrisfilo/alleninf) by finding the nearest region, up to 2 mm away.
o reduce the potential for misassignment, sample-to-region match-

ng was constrained by hemisphere and cortical/subcortical divisions
 Arnatkevi či ū t ė et al., 2019 ). If a brain region was not assigned any
ample based on the above procedure, the sample closest to the cen-
roid of that region was selected in order to ensure that all brain regions
ere assigned a value. 

Inter-subject variation was addressed by normalizing tissue sample
xpression values for each donor across genes using a scaled robust sig-
oid function ( Fulcher and Fornito, 2016 ): 

 𝑛𝑜𝑟𝑚 = 

1 

1 + exp (− 

( 𝑥 𝑔 − ⟨𝑥 𝑔 ⟩) 
IQR 𝑥 

) 
(2)

here ⟨𝑥 𝑔 ⟩ is the median and IQR is the normalized interquartile range
f the expression value of a single gene across regions. Normalized gene
xpression values were then rescaled to a unit interval: 

 𝑠𝑐𝑎𝑙𝑒𝑑 = 

𝑥 𝑛𝑜𝑟𝑚 − min ( 𝑥 𝑛𝑜𝑟𝑚 ) 
max ( 𝑥 𝑛𝑜𝑟𝑚 ) − min ( 𝑥 𝑛𝑜𝑟𝑚 ) 

(3)

ene expression values were normalized across tissue samples using the
ame procedure. Samples assigned to the same brain region were then
veraged separately for each donor. Scaled regional expression profiles
ere finally averaged across donors. 

Finally, we repeat all analyses using RNAseq data collected from
he two donors with RNAseq measurements (see Fig. S1 and Fig. S3)
 Hawrylycz et al., 2012 ). Gene expression-receptor density associations
cross neurotransmitter receptors in both the PET and autoradiography
atasets remain consistent whether gene expression is derived from the
icroarray or RNAseq (Fig. S11). 

ene-receptor pairs 

With the notable exception of the GABA B receptor, metabotropic
eurotransmitter receptors are monomeric structures, and thus a sin-
le gene codes for the entire receptor. Therefore, the expression of the
eceptor-coding gene was correlated with the density of the receptor
tself. The GABA B and ionotropic receptors are characterized by being
ultimeric protein complexes, so each receptor was correlated with mi-

roarray expression of all possible receptor subunits. Below, we outline
ach multimeric case. 

https://netneurolab.github.io/neuromaps/
http://human.brain-map.org/
https://github.com/netneurolab/abagen
https://github.com/chrisfilo/alleninf
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• GABA A is a pentamer typically composed of three primary subunits
( 𝛼1 , 𝛽2 , and 𝛾2 ) but can be built out of a total of nineteen different
subunits. For simplicity, we show results for the three primary sub-
units in the main text, but results for the remaining sixteen subunits
can be found in Fig. S12. 

• GABA B , a multimeric metabotropic receptor, is composed of two
subunits. We show both in the main analyses. 

• AMPA is a heterotetramer that typically consists of two pairs of du-
plicate subunits. These two pairs can be formed from any combina-
tion of four subunits. We show results for the gene whose expres-
sion is most highly correlated with AMPA density in the main text
( GRIA1 ). 

• NMDA is also a heterotetramer, typically composed of two N1 and
two N2 subunits, although there are four different N2 -encoding
genes, as well as a third subunit ( N3 ) for which there are two subunit-
encoding genes. The main analyses use the expression of the N1 -
encoding gene ( GRIN1 ). 

• Kainate exists as both a homotetramer and heterotetramer, built
from any of five subunits. We show results for the gene whose ex-
pression is most highly correlated with kainate density in the main
text ( GRIK2 ). 

• 𝛼4 𝛽2 is a pentamer typically composed of two 𝛼4 subunits and three
𝛽2 subunits ( Dani, 2015 ). However, the ligand used for the autora-
diograph, epibatidin, binds to any heteromeric nicotinic receptors
that contain both an alpha subunit ( 𝛼2 –𝛼7 , 𝛼9 , 𝛼10 ) and a beta sub-
unit ( 𝛽2 –𝛽4 ). The most abundant such receptor in the brain is the 𝛼4 𝛽2 
receptor, so we focus on gene expression of the 𝛼4 and 𝛽2 subunits
( CHRNA4 and CHRNB2 , respectively) in the main text. 

Correlations between neurotransmitter receptor density and multiple
ubunit expression were corrected for multiple comparisons using the
enjamini-Hochberg FDR correction ( Benjamini and Hochberg, 1995 ).
orrelation coefficients and corrected 𝑝 -values (see Null model ) for all
ubunits can be found in Table S3 (PET, cortex) Table S4 (PET, subcor-
ex), and Table S5 (autoradiography) as well as in stand-alone machine-
eadable supplementary csv files. 

ull model 

Spatial autocorrelation-preserving permutation tests were used to as-
ess statistical significance of associations across brain regions, termed
spin tests ” ( Alexander-Bloch et al., 2018; Markello and Misic, 2021 ).
arametric 𝑝 -values were not used because spatially embedded systems
uch as the brain violate the assumption that observations (brain re-
ions) are independent from one another. We created a surface-based
epresentation of the parcellation on the FreeSurfer fsaverage left hemi-
phere surface, via files from the Connectome Mapper toolkit ( https:
/github.com/LTS5/cmp ). We used the spherical projection of the fsav-
rage left hemisphere surface to define spatial coordinates for each par-
el by selecting the coordinates of the vertex closest to the center of
he mass of each parcel ( Vázquez-Rodríguez et al., 2019 ). These par-
el coordinates were then randomly rotated, and original parcels were
eassigned the value of the closest rotated parcel (10 000 repetitions).
arcels for which the medial wall was closest were assigned the value of
he next most proximal parcel instead. The procedure was performed at
he parcel resolution rather than the vertex resolution to avoid upsam-
ling the data, and only to the left hemisphere. In the autoradiography
ataset, null correlations were computed ignoring the insula and regions
esampled to the insula, for a maximum of three ignored brain regions.
ll reported 𝑝 -values for expression-density correlations are one-tailed. 

tructural connectivity 

Following the procedure described in de Wael et al. (2018) , we
btained diffusion weighted imaging data for 326 unrelated partic-
pants (age range 2235 years, 145 males) from the Human Con-
ectome Project (HCP; S900 release ( Van Essen et al., 2013 )). DWI
9 
ata was pre-processed using the MRtrix3 package ( Tournier et al.,
019 ) ( https://www.mrtrix.org/ ). More specifically, fiber orientation
istributions were generated using the multi-shell multi-tissue con-
trained spherical deconvolution algorithm from MRtrix ( Dhollander
t al., 2016; Jeurissen et al., 2014 ). White matter edges were then re-
onstructed using probabilistic streamline tractography based on the
enerated fiber orientation distributions ( Tournier et al., 2010 ). The
ract weights were then optimized by estimating an appropriate cross-
ection multiplier for each streamline following the procedure proposed
y Smith et al. (2015) and a connectivity matrix was built for each par-
icipant using the 68-region Deskian-Killiany parcellation ( Cammoun
t al., 2012; Desikan et al., 2006 ). Collating each individual’s structural
onnectome was done using a group-consensus approach that seeks to
reserve the density and edge-length distributions of the individual con-
ectomes ( Betzel et al., 2019 ). The binary density for the final whole-
rain structural connectome was 31 . 2% . Edges were weighted by the
verage log-transform of non-zero streamline density, scaled to values
etween 0 and 1. Detailed information regarding data acquisition and
re-processing is also available elsewhere ( Glasser et al., 2013; Van Es-
en et al., 2013 ). 
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Figure S1. PET-derived receptor densities versus RNAseq gene expression | The analysis in Fig. 1 of the main text were repeated
using RNAseq data instead of microarray gene expression [47]. Yellow scatter plots indicate significant (pspin < 0.05) and large
(r > 0.5) expression-density correspondence. Receptor density and gene expression is z-scored.
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Figure S2. Gene-receptor correlations in different laminar layers | Gene-receptor Spearman correlation coefficients are shown
in supragranular, granular, and infragranular laminar layers. Receptor density data is acquired from autoradiography [117]. Each
line is associated with a gene (gene name either on the right or left of the line). Neurotransmitter systems are colour-coded
according to the legend, and points refer to significant Spearman correlations (pspin < 0.05).
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Figure S3. Autoradiography-derived receptor densities versus RNAseq gene expression | The analysis in Fig. 2 of the main text
were repeated using RNAseq data instead of microarray gene expression [47]. Yellow scatter plots indicate significant (pspin < 0.05)
and large (r > 0.5) expression-density correspondence. Receptor density and gene expression is z-scored.
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Figure S4. Replication in a 111-node parcellation | PET receptor/transporter densities and gene expression levels were par-
cellated into a 111-node cortical left hemisphere parcellation. Yellow scatter plots indicate significant (pspin < 0.05) and large
(r > 0.5) expression-density correspondence. Receptor density and gene expression is z-scored.
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Figure S5. Relationship between receptor expression-density correlation and differential stability in the subcortex | We
repeat Fig. 4 in the main text using the correlation between receptor gene expression and PET-derived protein density in the
subcortex (r = 0.46, p = 0.038). Notably, expression-density relationships for some receptors (e.g. VAChT, D1, and 5-HT6)
considerably improve in the subcortex despite low differential stability. This may be due to a smaller distance between mRNA
transcripts and protein expression on the cell surface, or differences in PET radioligand binding in subcortex versus cortex (as is
the case for D1 which shows improved binding specificity in the subcortex [34]).

Figure S6. Correspondence between PET- and autoradiography-derived receptor density | (a) Spearman correlation between
PET- and autoradiography-derived receptor density for the six receptors with both measurements. (b) The relationship between
genetic differential stability and the PET-autoradiography correspondence for the same six receptors.
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Figure S7. Correspondence between regional receptor density and neighbouring gene expression | For each gene-receptor
pair, we correlate regional receptor density with the mean gene expression of structurally-connected neighbours, weighted by the
structural connection (x-axis). Yellow points indicate significant (two-tailed pspin < 0.05) correlations between regional receptor
density and neighbouring gene expression. Next, we plot the region-neighbour correlation against the original correlation between
gene expression and receptor density. This analysis was conducted using (a) PET-derived receptor density and (b) autoradiography-
derived receptor density.
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Figure S8. PET-derived whole-brain expression-density correspondence | For each gene-receptor pair, we separately z-score
cortical and subcortical gene expression and receptor density. Then, we combine all regions into a single analysis and compare
whole-brain gene expression to receptor density.
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Figure S9. Alternative PET tracer choices | For completeness, we repeat the analysis using alternative PET tracers, which is
available for five receptors: 5-HT1A ([11C]CUMI-101 [11]), 5-HT1B ([11C]AZ10419369 [11]), 5-HT2A ([18F ]altanserin [94]), CB1

([18F]FMPEP-D2 [59]), and D2 ([18F]fallypride [51]).

Figure S10. Comparing probe-selection method | The relationship between receptor expression-density correspondence and
differential stability is conserved when (a) all microarray probes indexing the same gene are averaged together (Spearman r = 0.55,
p = 0.009), (b) the selected probe has maximum average expression (Spearman r = 0.68, p = 0.0007), (c) the selected probe
has maximum variance in expression (Spearman r = 0.74, p = 0.0001), (d) the selected probe has maximum loading on the first
principal component of gene expression (Spearman r = 0.66, p = 0.001), (e) the selected probe is maximally correlated to other
probes from the same gene (if only one probe exists, the maximum variance as in (c) is selected instead; Spearman r = 0.49,
p = 0.024), (f) the selected probe is maximally correlated to other probes from the same gene (if only one probe exists, the
maximum intensity as in (b) is selected instead; Spearman r = 0.55, p = 0.010), and (g) the selected probe has the most consistent
pattern of regional variation to RNAseq data (Spearman r = 0.71, p = 0.0003) [62].
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Figure S11. Microarray versus RNAseq AHBA gene expression | We plot that expression-density correlation computed for all
gene-receptor pairs when calculated using microarray versus RNAseq AHBA gene expression. Each point represents a gene-receptor
pair.

Figure S12. Expression-density association for the remaining sixteen GABAa subunits | Expression-density association for the
remaining sixteen GABAa subunits that do not comprise the main channel (α1, β2, γ2), after correcting for multiple comparisions
(FDR). Receptor density and gene expression is z-scored.
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Receptor/
transporter Neurotransmitter Tracer Measure N Age References

D1 dopamine [11C]SCH23390 BPND 13 33± 13 Kaller et al., 2017 [54]
D2 dopamine [11C]FLB-457 BPND 37 48.4± 16.9 Smith et al., 2019 [91, 105]

D2 dopamine [11C]FLB-457 BPND 55 32.5± 9.7
Sandiego et al., 2015
[91, 92, 103, 105, 114]

D2 dopamine [11C]raclopride BPND 7 24± 2 Alakurtti et al., 2015 [2]
DAT∗ dopamine [123I]-FP-CIT SUVR 174 61± 11 Dukart et al., 2018 [31]
NET∗ norepinephrine [11C]MRB BPND 77 33.4± 9.2 Ding et al., 2010 [10, 21, 29, 90]
5-HT1A serotonin [11C]WAY-100635 BPND 36 26.3± 5.2 Savli et al., 2012 [94]

5-HT1B serotonin [11C]P943 BPND 65 33.7± 9.7
Gallezot et al., 2010
[6, 39, 66, 71, 72, 82, 93]

5-HT1B serotonin [11C]P943 BPND 23 28.7± 7.0 Savli et al., 2012 [94]
5-HT2A serotonin [11C]Cimbi-36 Bmax 29 22.6± 2.7 Beliveau et al., 2017 [11]
5-HT4 serotonin [11C]SB207145 Bmax 59 25.9± 5.3 Beliveau et al., 2017 [11]
5-HT6 serotonin [11C]GSK215083 BPND 30 36.6± 9.0 Radhakrishnan et al., 2018 [85, 86]
5-HTT∗ serotonin [11C]DASB Bmax 100 25.1± 5.8 Beliveau et al., 2017 [11]
α4β2 acetylcholine [18F]flubatine VT 30 33.5± 10.7 Hillmer et al., 2016 [5, 48]
M1 acetylcholine [11C]LSN3172176 BPND 24 40.5± 11.7 Naganawa et al., 2021 [73]
VAChT∗ acetylcholine [18F]FEOBV SUVR 4 37± 10.2 PI: Lauri Tuominen & Synthia Guimond [44]
VAChT∗ acetylcholine [18F]FEOBV SUVR 18 66.8± 6.8 Aghourian et al., 2017 [1]
VAChT∗ acetylcholine [18F]FEOBV SUVR 5 68.3± 3.1 Bedard et al., 2019 [9]
VAChT∗ acetylcholine [18F]FEOBV SUVR 3 66.6± 0.94 PI: Taylor W. Schmitz & R. Nathan Spreng [44]
mGluR5 glutamate [11C]ABP688 BPND 73 19.9± 3.04 Smart et al., 2019 [104]
mGluR5 glutamate [11C]ABP688 BPND 22 67.9± 9.6 PI: Pedro Rosa-Neto [44]
mGluR5 glutamate [11C]ABP688 BPND 28 33.1± 11.2 DuBois et al., 2016 [30]
GABAA/BZ GABA [11C]flumazenil Bmax 16 26.6± 8 Nørgaard et al., 2021 [75]
H3 histamine [11C]GSK189254 VT 8 31.7± 9.0 Gallezot et al., 2017 [40]
CB1 cannabinoid [11C]OMAR VT 77 30.0± 8.9 Normandin et al., 2015 [33, 74, 77, 87]
MOR opioid [11C]carfentanil BPND 204 32.3± 10.8 Kantonen et al., 2020 [55]

TABLE S1. Neurotransmitter receptors and transporters included in analyses | BPND = non-displaceable binding potential;
VT = tracer distribution volume; Bmax = density (pmol/ml) converted from binding potential (5-HT) or distributional volume
(GABA) using autoradiography-derived densities; SUVR = standard uptake value ratio. Refer to [44] for more details. Note that
[11C]raclopride is used to map subcortical D2 density while [11C]FLB-457 is used to map cortical D2 density. Asterisks indicate
transporters.

Receptor Neurotransmitter Excitatory/Inhibitory Ionotropic/Metabotropic
AMPA glutamate excitatory ionotropic
NMDA glutamate excitatory ionotropic
Kainate glutamate excitatory ionotropic
GABAA GABA inhibitory ionotropic
GABAA/BZ GABA inhibitory ionotropic
GABAB GABA inhibitory metabotropic
M1 acetylcholine excitatory metabotropic
M2 acetylcholine inhibitory metabotropic
M3 acetylcholine excitatory metabotropic
α4β2 acetylcholine excitatory ionotropic
α1 norepinephrine excitatory metabotropic
α2 norepinephrine inhibitory metabotropic
5-HT1A serotonin inhibitory metabotropic
5-HT2 serotonin excitatory metabotropic
D1 dopamine excitatory metabotropic

TABLE S2. Neurotransmitter receptors included in the autoradiography dataset
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gene receptor Spearman r pspin gene receptor Spearman r pspin

HTR1A 5HT1a 0.795875 0.009299 GABRG2 GABAa 0.155691 0.805419
HTR1B 5HT1b 0.153247 0.425057 GABRR3 GABAa 0.089381 0.805419
HTR2A 5HT2a 0.166692 0.489651 GABRD GABAa 0.241864 0.797034
HTR4 5HT4 0.445684 0.099290 GABRR2 GABAa -0.067991 0.802279
HTR6 5HT6 -0.188999 0.330967 GABRR1 GABAa -0.101910 0.797034
SLC6A4 5HTT 0.061574 0.722628 GABRG1 GABAa -0.539190 0.381319
CHRNA2 A4B2 0.053323 0.802520 GABRA2 GABAa -0.557830 0.381319
CHRNA3 A4B2 -0.267532 0.778172 GABRA4 GABAa 0.131551 0.802279
CHRNA4 A4B2 0.471352 0.558194 GABRB1 GABAa -0.528801 0.381319
CHRNA5 A4B2 0.365011 0.347565 GABRG3 GABAa 0.423682 0.381319
CHRNA6 A4B2 0.587777 0.152335 GABRA5 GABAa -0.521772 0.381319
CHRNA7 A4B2 0.288312 0.761564 GABRB3 GABAa -0.369595 0.414729
CHRNA9 A4B2 -0.175248 0.788621 GABRP GABAa -0.460963 0.381319
CHRNA10 A4B2 -0.137357 0.802520 GABRA6 GABAa 0.246448 0.797034
CHRNB2 A4B2 -0.063102 0.802520 GABRE GABAa -0.274255 0.778749
CHRNB3 A4B2 0.634530 0.096790 GABRA3 GABAa -0.416043 0.394738
CHRNB4 A4B2 0.040183 0.802520 GABRQ GABAa -0.464629 0.394738
CNR1 CB1 0.742704 0.051995 HRH3 H3 0.628113 0.133387
DRD1 D1 0.138273 0.496950 CHRM1 M1 0.629030 0.001700
DRD2 D2 0.699007 0.038696 GRM5 mGluR5 0.343621 0.118588
SLC6A3 DAT 0.280672 0.185981 OPRM1 MOR 0.802903 0.001800
GABRA1 GABAa 0.245531 0.797034 SLC6A2 NET -0.136134 0.523948
GABRB2 GABAa 0.525439 0.381319 SLC18A3 VAChT 0.129412 0.473253

TABLE S3. Spearman correlations between microarray gene expression and PET-derived receptor density in the cortex. Significance
was assessed against a spatial autocorrelation preserving null model (pspin) and in cases where receptors are repeated, corrected
for multiple comparisons [12].

gene receptor Spearman r p gene receptor Spearman r p
HTR1A 5HT1a 0.950000 3.043129×10−08 GABRG2 GABAa 0.410714 6.416432×10−02

HTR1B 5HT1b -0.314286 8.730300×10−01 GABRR3 GABAa -0.253571 8.190919×10−01

HTR2A 5HT2a 0.800000 1.711349×10−04 GABRD GABAa 0.182143 2.579408×10−01

HTR4 5HT4 0.432143 5.384652×10−02 GABRR2 GABAa -0.060714 5.850940×10−01

HTR6 5HT6 0.335714 1.106058×10−01 GABRR1 GABAa -0.564286 9.857837×10−01

SLC6A4 5HTT -0.146429 6.987250×10−01 GABRG1 GABAa 0.360714 9.327719×10−02

CHRNA2 A4B2 0.639286 5.144223×10−03 GABRA2 GABAa 0.507143 2.683183×10−02

CHRNA3 A4B2 0.425000 5.714774×10−02 GABRA4 GABAa 0.467857 3.931512×10−02

CHRNA4 A4B2 0.592857 9.923211×10−03 GABRB1 GABAa 0.735714 8.849343×10−04

CHRNA5 A4B2 0.342857 1.054619×10−01 GABRG3 GABAa 0.567857 1.361418×10−02

CHRNA6 A4B2 0.350000 1.004727×10−01 GABRA5 GABAa 0.610714 7.796416×10−03

CHRNA7 A4B2 -0.157143 7.120237×10−01 GABRB3 GABAa 0.532143 2.057929×10−02

CHRNA9 A4B2 -0.278571 8.426453×10−01 GABRP GABAa -0.150000 7.031849×10−01

CHRNA10 A4B2 -0.575000 9.875319×10−01 GABRA6 GABAa 0.335714 1.106058×10−01

CHRNB2 A4B2 0.032143 4.547311×10−01 GABRE GABAa 0.200000 2.374070×10−01

CHRNB3 A4B2 -0.075000 6.047446×10−01 GABRA3 GABAa 0.328571 1.159048×10−01

CHRNB4 A4B2 -0.375000 9.157836×10−01 GABRQ GABAa 0.439286 5.068029×10−02

CNR1 CB1 0.121429 3.332006×10−01 HRH3 H3 0.382143 7.991181×10−02

DRD1 D1 0.867857 1.375903×10−05 CHRM1 M1 0.639286 5.144223×10−03

DRD2 D2 0.842857 3.983598×10−05 GRM5 mGluR5 0.492857 3.097550×10−02

SLC6A3 DAT -0.396429 9.282527×10−01 OPRM1 MOR 0.621429 6.701003×10−03

GABRA1 GABAa -0.246429 8.120247×10−01 SLC6A2 NET 0.185714 2.537705×10−01

GABRB2 GABAa 0.067857 4.050544×10−01 SLC18A3 VAChT 0.785714 2.582274×10−04

TABLE S4. Spearman correlations between microarray gene expression and PET-derived receptor density in the subcortex. In cases
where receptors are repeated, parametric p-values were corrected for multiple comparisons [12].



29

gene receptor Spearman r pspin gene receptor Spearman r pspin

GRIA1 AMPA 0.378166 0.637403 GABRR3 GABAa/BZ -0.126891 0.865499
GRIA2 AMPA 0.207473 0.637403 GABRD GABAa/BZ 0.162000 0.943870
GRIA3 AMPA -0.017220 0.830617 GABRR2 GABAa/BZ 0.190922 0.865499
GRIA4 AMPA 0.300928 0.637403 GABRR1 GABAa/BZ -0.164674 0.865499
GRIN1 NMDA -0.276352 0.774923 GABRG1 GABAa/BZ -0.196272 0.933163
GRIN2A NMDA -0.148792 0.774923 GABRA2 GABAa/BZ -0.309120 0.865499
GRIN2B NMDA 0.257962 0.774923 GABRA4 GABAa/BZ 0.245925 0.865499
GRIN2C NMDA 0.139597 0.774923 GABRB1 GABAa/BZ -0.359609 0.865499
GRIN2D NMDA -0.112681 0.774923 GABRG3 GABAa/BZ 0.181894 0.865499
GRIN3A NMDA -0.188581 0.774923 GABRA5 GABAa/BZ -0.478308 0.865499
GRIN3B NMDA 0.292234 0.774923 GABRB3 GABAa/BZ -0.364290 0.865499
GRIK1 kainate 0.479478 0.325634 GABRP GABAa/BZ -0.211485 0.865499
GRIK2 kainate 0.470785 0.325634 GABRA6 GABAa/BZ 0.395386 0.865499
GRIK3 kainate 0.458246 0.325634 GABRE GABAa/BZ -0.146953 0.933163
GRIK4 kainate 0.188080 0.725027 GABRA3 GABAa/BZ -0.450556 0.865499
GRIK5 kainate 0.309120 0.445080 GABRQ GABAa/BZ -0.407256 0.865499
GABRA1 GABAa 0.351584 0.866313 GABBR1 GABAb 0.316141 0.361764
GABRB2 GABAa 0.462259 0.866313 GABBR2 GABAb 0.186408 0.361764
GABRG2 GABAa 0.231046 0.884150 CHRM1 m1 0.043969 0.842216
GABRR3 GABAa 0.119870 0.884150 CHRM2 m2 -0.118365 0.678632
GABRD GABAa 0.221182 0.884150 CHRM3 m3 0.323497 0.097890
GABRR2 GABAa 0.038786 0.970003 CHRNA2 a4b2 -0.008526 0.999400
GABRR1 GABAa -0.173034 0.866313 CHRNA3 a4b2 0.046477 0.999400
GABRG1 GABAa -0.205634 0.884150 CHRNA4 a4b2 0.193931 0.999400
GABRA2 GABAa -0.340216 0.884150 CHRNA5 a4b2 -0.072557 0.999400
GABRA4 GABAa 0.375993 0.866313 CHRNA6 a4b2 0.532308 0.654985
GABRB1 GABAa -0.390036 0.884150 CHRNA7 a4b2 -0.066204 0.999400
GABRG3 GABAa 0.577782 0.714329 CHRNA9 a4b2 -0.257628 0.999400
GABRA5 GABAa -0.434172 0.866313 CHRNA10 a4b2 -0.187077 0.999400
GABRB3 GABAa -0.199783 0.884150 CHRNB2 a4b2 0.248098 0.999400
GABRP GABAa -0.115523 0.884150 CHRNB3 a4b2 0.659701 0.252975
GABRA6 GABAa 0.513082 0.866313 CHRNB4 a4b2 -0.021232 0.999400
GABRE GABAa 0.024241 0.884150 ADRA1A a1 0.139597 0.571443
GABRA3 GABAa -0.586642 0.714329 ADRA2A a2 0.452562 0.027897
GABRQ GABAa -0.442030 0.866313 HTR1A 5-HT1a 0.800301 0.001700
GABRA1 GABAa/BZ 0.052997 0.984302 HTR2A 5-HT2 -0.048316 0.824618
GABRB2 GABAa/BZ 0.290395 0.865499 DRD1 D1 -0.109337 0.801820
GABRG2 GABAa/BZ 0.070551 0.984302

TABLE S5. Spearman correlations between microarray gene expression and autoradiography-derived receptor density. Significance
was assessed against a spatial autocorrelation preserving null model (pspin) and in cases where receptors are repeated, corrected
for multiple comparisons [12].
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receptor # AHBA genes # significant gene names # r>0.5
5HT1A 18.0 2.0 HTR2C, HTR1A 3
5HT1B 18.0 0.0 0
5HT2A 18.0 0.0 3
5HT4 18.0 3.0 HTR2C, HTR3B, HTR1A 4
5HT6 18.0 0.0 0
5HTT 18.0 0.0 0
α4β2 181.0 0.0 18
M1 181.0 0.0 4
VAChT 181.0 0.0 1

CB1 26.0 7.0
GNB2, GNB4, CNR1, CNRIP1,
GRM1, GNG4, PLCB2 10

D1 71.0 0.0 3
D2 71.0 0.0 11
DAT 71.0 0.0 2
GABAA 70.0 0.0 2
H3 62.0 0.0 4
mGluR5 171.0 0.0 0
MOR 47.0 4.0 ADCY2, GNB2, GNB4, OPRM1 18
NET 29.0 0.0 2

TABLE S6. Panther ontology pathways | For each neurotransmitter receptor, we used the Panther classification system to construct
a list of genes related to proteins within the neurotransmitter’s protein pathway (using the neurotransmitter’s name as a search
term, e.g. “dopamine”). Here we show the number of genes in each list, the number and names of genes that are significantly
correlated with PET-derived protein density (FDR-correct pspin < 0.05), and then number of genes that show large correlation
(r > 0.5) with PET-derived protein density, irregardless of statistical significance.
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