000910498 001__ 910498
000910498 005__ 20230502100735.0
000910498 0247_ $$2doi$$a10.1109/IGARSS46834.2022.9883446
000910498 0247_ $$2WOS$$aWOS:000920916607199
000910498 037__ $$aFZJ-2022-03881
000910498 1001_ $$0P:(DE-Juel1)180929$$aChakhvashvili, Erekle$$b0$$eCorresponding author
000910498 1112_ $$aIGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium$$cKuala Lumpur$$d2022-07-17 - 2022-07-22$$wMalaysia
000910498 245__ $$aLAI and Leaf Chlorophyll Content Retrieval Under Changing Spatial Scale Using a UAV-Mounted Multispectral Camera
000910498 260__ $$bIEEE$$c2022
000910498 300__ $$a7891-7894
000910498 3367_ $$2ORCID$$aCONFERENCE_PAPER
000910498 3367_ $$033$$2EndNote$$aConference Paper
000910498 3367_ $$2BibTeX$$aINPROCEEDINGS
000910498 3367_ $$2DRIVER$$aconferenceObject
000910498 3367_ $$2DataCite$$aOutput Types/Conference Paper
000910498 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1668667978_3654
000910498 520__ $$aRecent advancements in unmanned aerial vehicle (UAV) technologies made it possible to monitor agricultural fields at higher spatial and temporal resolution than commonly possible by aerial and satellite surveys. Mapping crop variables such as leaf area index (LAI) and leaf chlorophyll content (LCC) from low-cost UAV-based multispectral cameras can deliver vital information about crop status to farmers and plant breeders. Retrieval of these variables using radiative transfer models (RTMs) has been widely studied in the satellite remote sensing community but is still not well explored in the UAV remote sensing community. This study aims to investigate the advantages of high spatial resolution UAV image data for retrieving LAI and LCC using RTM inversion. A breeding experiment consisting of soybean plots has shown that high-resolution imagery (0.015m) delivers better retrieval accuracy compared to coarser resampled image data. Particularly, biochemical parameters, such as LCC, benefit from high spatial resolution.
000910498 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000910498 536__ $$0G:(BMBF)390732324$$aEXC 2070: PhenoRob - Robotics and Phenotyping for Sustainable Crop Production (390732324)$$c390732324$$x1
000910498 588__ $$aDataset connected to CrossRef Conference
000910498 7001_ $$0P:(DE-Juel1)186921$$aBendig, Juliane$$b1$$ufzj
000910498 7001_ $$0P:(DE-Juel1)172711$$aSiegmann, Bastian$$b2$$ufzj
000910498 7001_ $$0P:(DE-Juel1)161185$$aMuller, Onno$$b3$$ufzj
000910498 7001_ $$0P:(DE-HGF)0$$aVerrelst, Jochem$$b4
000910498 7001_ $$0P:(DE-Juel1)129388$$aRascher, Uwe$$b5
000910498 773__ $$a10.1109/IGARSS46834.2022.9883446
000910498 8564_ $$uhttps://juser.fz-juelich.de/record/910498/files/2022_Chakhvashvili_LAI%20AND%20LEAF%20CHLOROPHYLL%20CONTENT%20RETRIEVAL%20UNDER%20CHANGING%20SPATIAL%20SCALE%20USING%20A%20UAV-MOUNTED%20MULTISPECTRAL%20CAMERA.pdf$$yRestricted
000910498 909CO $$ooai:juser.fz-juelich.de:910498$$pVDB
000910498 9141_ $$y2022
000910498 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180929$$aForschungszentrum Jülich$$b0$$kFZJ
000910498 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186921$$aForschungszentrum Jülich$$b1$$kFZJ
000910498 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172711$$aForschungszentrum Jülich$$b2$$kFZJ
000910498 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161185$$aForschungszentrum Jülich$$b3$$kFZJ
000910498 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129388$$aForschungszentrum Jülich$$b5$$kFZJ
000910498 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000910498 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000910498 980__ $$acontrib
000910498 980__ $$aVDB
000910498 980__ $$aI:(DE-Juel1)IBG-2-20101118
000910498 980__ $$aUNRESTRICTED