001     910498
005     20230502100735.0
024 7 _ |2 doi
|a 10.1109/IGARSS46834.2022.9883446
024 7 _ |a WOS:000920916607199
|2 WOS
037 _ _ |a FZJ-2022-03881
100 1 _ |0 P:(DE-Juel1)180929
|a Chakhvashvili, Erekle
|b 0
|e Corresponding author
111 2 _ |a IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium
|c Kuala Lumpur
|d 2022-07-17 - 2022-07-22
|w Malaysia
245 _ _ |a LAI and Leaf Chlorophyll Content Retrieval Under Changing Spatial Scale Using a UAV-Mounted Multispectral Camera
260 _ _ |b IEEE
|c 2022
300 _ _ |a 7891-7894
336 7 _ |2 ORCID
|a CONFERENCE_PAPER
336 7 _ |0 33
|2 EndNote
|a Conference Paper
336 7 _ |2 BibTeX
|a INPROCEEDINGS
336 7 _ |2 DRIVER
|a conferenceObject
336 7 _ |2 DataCite
|a Output Types/Conference Paper
336 7 _ |0 PUB:(DE-HGF)8
|2 PUB:(DE-HGF)
|a Contribution to a conference proceedings
|b contrib
|m contrib
|s 1668667978_3654
520 _ _ |a Recent advancements in unmanned aerial vehicle (UAV) technologies made it possible to monitor agricultural fields at higher spatial and temporal resolution than commonly possible by aerial and satellite surveys. Mapping crop variables such as leaf area index (LAI) and leaf chlorophyll content (LCC) from low-cost UAV-based multispectral cameras can deliver vital information about crop status to farmers and plant breeders. Retrieval of these variables using radiative transfer models (RTMs) has been widely studied in the satellite remote sensing community but is still not well explored in the UAV remote sensing community. This study aims to investigate the advantages of high spatial resolution UAV image data for retrieving LAI and LCC using RTM inversion. A breeding experiment consisting of soybean plots has shown that high-resolution imagery (0.015m) delivers better retrieval accuracy compared to coarser resampled image data. Particularly, biochemical parameters, such as LCC, benefit from high spatial resolution.
536 _ _ |0 G:(DE-HGF)POF4-2173
|a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|c POF4-217
|f POF IV
|x 0
536 _ _ |0 G:(BMBF)390732324
|a EXC 2070:  PhenoRob - Robotics and Phenotyping for Sustainable Crop Production (390732324)
|c 390732324
|x 1
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |0 P:(DE-Juel1)186921
|a Bendig, Juliane
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)172711
|a Siegmann, Bastian
|b 2
|u fzj
700 1 _ |0 P:(DE-Juel1)161185
|a Muller, Onno
|b 3
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Verrelst, Jochem
|b 4
700 1 _ |0 P:(DE-Juel1)129388
|a Rascher, Uwe
|b 5
773 _ _ |a 10.1109/IGARSS46834.2022.9883446
856 4 _ |u https://juser.fz-juelich.de/record/910498/files/2022_Chakhvashvili_LAI%20AND%20LEAF%20CHLOROPHYLL%20CONTENT%20RETRIEVAL%20UNDER%20CHANGING%20SPATIAL%20SCALE%20USING%20A%20UAV-MOUNTED%20MULTISPECTRAL%20CAMERA.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:910498
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)180929
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)186921
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)172711
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)161185
|a Forschungszentrum Jülich
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129388
|a Forschungszentrum Jülich
|b 5
|k FZJ
913 1 _ |0 G:(DE-HGF)POF4-217
|1 G:(DE-HGF)POF4-210
|2 G:(DE-HGF)POF4-200
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-2173
|a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|x 0
914 1 _ |y 2022
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21