000910500 001__ 910500
000910500 005__ 20230301073508.0
000910500 0247_ $$2doi$$a10.1007/s11249-022-01570-x
000910500 0247_ $$2ISSN$$a1023-8883
000910500 0247_ $$2ISSN$$a1573-2711
000910500 0247_ $$2Handle$$a2128/32162
000910500 0247_ $$2WOS$$aWOS:000760271100002
000910500 037__ $$aFZJ-2022-03883
000910500 082__ $$a670
000910500 1001_ $$0P:(DE-Juel1)130885$$aPersson, Bo$$b0$$eCorresponding author
000910500 245__ $$aOn the Stability of Spinning Asteroids
000910500 260__ $$aDordrecht$$bSpringer Science  Business Media B.V.$$c2022
000910500 3367_ $$2DRIVER$$aarticle
000910500 3367_ $$2DataCite$$aOutput Types/Journal article
000910500 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1666875271_21995
000910500 3367_ $$2BibTeX$$aARTICLE
000910500 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910500 3367_ $$00$$2EndNote$$aJournal Article
000910500 520__ $$aMost asteroids with a diameter larger than ∼300 m are rubble piles, i.e., consisting of more than one solid object. All asteroids are rotating but almost all asteroids larger than ∼300 m rotate with a period longer than 2.3 hours, which is the critical period where the centrifugal force equals the gravitational force. This indicates that there are nearly no adhesive interaction forces between the asteroid fragments. We show that this is due to the surface roughness of the asteroid particles which reduces the van der Waals interaction between the particles by a factor of 100 for micrometer sized particles and even more for larger particles. We show that surface roughness results in an interaction force which is independent of the size of the particles, in contrast to the linear size dependency expected for particles with smooth surfaces. Thus, two stone fragments of size 100 nm attract each other with the same non-gravitational force as two fragments of size 10 m.
000910500 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000910500 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910500 7001_ $$0P:(DE-HGF)0$$aBiele, J.$$b1
000910500 773__ $$0PERI:(DE-600)2015908-0$$a10.1007/s11249-022-01570-x$$gVol. 70, no. 2, p. 34$$n2$$p34$$tTribology letters$$v70$$x1023-8883$$y2022
000910500 8564_ $$uhttps://juser.fz-juelich.de/record/910500/files/On%20the%20Stability%20of%20Spinning%20Asteroids.pdf$$yOpenAccess
000910500 8767_ $$d2022-12-19$$eHybrid-OA$$jDEAL
000910500 909CO $$ooai:juser.fz-juelich.de:910500$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000910500 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130885$$aForschungszentrum Jülich$$b0$$kFZJ
000910500 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000910500 9141_ $$y2022
000910500 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000910500 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000910500 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-01-29$$wger
000910500 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910500 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000910500 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-10$$wger
000910500 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-10
000910500 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-10
000910500 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-10
000910500 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-10
000910500 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-10
000910500 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bTRIBOL LETT : 2021$$d2022-11-10
000910500 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-10
000910500 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-10
000910500 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-10
000910500 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000910500 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000910500 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000910500 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
000910500 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000910500 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000910500 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000910500 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000910500 9801_ $$aFullTexts
000910500 980__ $$ajournal
000910500 980__ $$aVDB
000910500 980__ $$aUNRESTRICTED
000910500 980__ $$aI:(DE-Juel1)IAS-1-20090406
000910500 980__ $$aI:(DE-Juel1)PGI-1-20110106
000910500 980__ $$aI:(DE-82)080009_20140620
000910500 980__ $$aI:(DE-82)080012_20140620
000910500 980__ $$aAPC