000910502 001__ 910502
000910502 005__ 20230123110706.0
000910502 0247_ $$2doi$$a10.22226/2410-3535-2022-1-49-53
000910502 0247_ $$2ISSN$$a2218-5046
000910502 0247_ $$2ISSN$$a2410-3535
000910502 0247_ $$2Handle$$a2128/32165
000910502 0247_ $$2WOS$$aWOS:000765158700008
000910502 037__ $$aFZJ-2022-03885
000910502 082__ $$a620
000910502 1001_ $$aAntonov, Evgenii$$b0
000910502 245__ $$aMetal nanoparticles as an electromagnetic microwave heat-cure agent for polydimethylsiloxane elastomers
000910502 260__ $$aUfa$$c2022
000910502 3367_ $$2DRIVER$$aarticle
000910502 3367_ $$2DataCite$$aOutput Types/Journal article
000910502 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1666875867_31184
000910502 3367_ $$2BibTeX$$aARTICLE
000910502 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910502 3367_ $$00$$2EndNote$$aJournal Article
000910502 520__ $$aMost commonly polydimethylsiloxane (PDMS) elastomer (silicone) is obtained from prepolymer liquid by cross-linking reaction (curing) at room temperature or assisted by external heating. However, in special cases, such as medical applications, it could be useful to cure the elastomeric material selectively and / or without external heat. An ability for customized curing can be controlled by selection of special type of fillers, such as metal particles or carbon nanotubes for curing routed via Joule heat, magnetic induction or electromagnetic microwave radiation. There are number of reasons for microwave curing to be preferred: microwave curing does not require heat conductivity of the surrounding medium, microwave energy can be directly delivered to select part of the material, this also allows for energy saving. Dielectric (internal) heating by microwave radiation is not efficient for pristine PDMS due to non-polar nature of this substance. Higher chemical polarity additives to PDMS could facilitate internal heating. We test silver nanoparticles (Ag NPs) for using as internal heating agent for PDMS elastomer kit (Sylgard 184). A set of general properties of the resultant PDMS / AgNPs composite material, including dynamic mechanical analysis (DMA), water wetting contact angle, adhesion to glass and optical spectroscopy of the filled PDMS are evaluated herein. The obtained composite materials exhibit a significantly higher work of adhesion, a lower viscoelastic modulus and slightly higher wettability. With time of microwave treatment and consequently cross-linking of the material those parameters head towards or approach those of the stock PDMS material.
000910502 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000910502 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910502 7001_ $$aSosnin, Ilya$$b1
000910502 7001_ $$0P:(DE-Juel1)178036$$aTiwari, Avinash$$b2
000910502 7001_ $$00000-0002-7519-9208$$aPrasolov, Nikita$$b3
000910502 7001_ $$aDorogin, Leonid$$b4
000910502 773__ $$0PERI:(DE-600)2812519-8$$a10.22226/2410-3535-2022-1-49-53$$gVol. 12, no. 1, p. 49 - 53$$n1$$p49 - 53$$tPisʹma o materialach$$v12$$x2218-5046$$y2022
000910502 8564_ $$uhttps://juser.fz-juelich.de/record/910502/files/Metal%20nanoparticles%20as%20an%20electromagnetic%20microwave%20heat-cure%20agent%20for%20polydimethylsiloxane%20elastomers.pdf$$yOpenAccess
000910502 909CO $$ooai:juser.fz-juelich.de:910502$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000910502 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178036$$aForschungszentrum Jülich$$b2$$kFZJ
000910502 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000910502 9141_ $$y2022
000910502 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910502 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-09
000910502 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-09
000910502 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2022-11-09
000910502 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-09
000910502 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000910502 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000910502 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2
000910502 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x3
000910502 980__ $$ajournal
000910502 980__ $$aVDB
000910502 980__ $$aUNRESTRICTED
000910502 980__ $$aI:(DE-Juel1)IAS-1-20090406
000910502 980__ $$aI:(DE-Juel1)PGI-1-20110106
000910502 980__ $$aI:(DE-82)080012_20140620
000910502 980__ $$aI:(DE-82)080009_20140620
000910502 9801_ $$aFullTexts