001     910506
005     20230123110706.0
024 7 _ |a 10.1016/j.apsadv.2022.100222
|2 doi
024 7 _ |a 2128/32156
|2 Handle
024 7 _ |a WOS:000768298900005
|2 WOS
037 _ _ |a FZJ-2022-03889
082 _ _ |a 530
100 1 _ |a Rodriguez, Nestor
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Air leakage in seals with application to syringes
260 _ _ |a Amsterdam
|c 2022
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1666873019_21995
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We study the leakage of air in syringes with Teflon coated rubber stopper and glass barrel. The leakrate depends on the interfacial surface roughness, the viscoelastic properties of the rubber and on the elastoplastic properties of the Teflon coating. The measured leakage rates are compared to the predictions of a simple theory for gas flow, which takes into account both the diffusive and ballistic air flow, and the elastoplastic multiscale contact mechanics which determines the probability distribution of interfacial separations. The theory shows that the interfacial air flow (leakage) channels are so narrow that the gas flow is mainly ballistic (the so called Knudsen limit). The implications for container closure integrity is discussed.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Tiwari, Avinash
|0 P:(DE-Juel1)178036
|b 1
700 1 _ |a Persson, Bo
|0 P:(DE-Juel1)130885
|b 2
|u fzj
773 _ _ |a 10.1016/j.apsadv.2022.100222
|g Vol. 8, p. 100222 -
|0 PERI:(DE-600)3051219-0
|p 100222 -
|t Applied surface science advances
|v 8
|y 2022
|x 2666-5239
856 4 _ |u https://juser.fz-juelich.de/record/910506/files/Applied%20Surface%20Science%20Advances.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:910506
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-Juel1)188496
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)178036
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130885
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-12-04T09:01:54Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-12-04T09:01:54Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2020-12-04T09:01:54Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-19
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-19
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21