000910510 001__ 910510
000910510 005__ 20230123110707.0
000910510 0247_ $$2doi$$a10.1088/1367-2630/ac8951
000910510 0247_ $$2Handle$$a2128/32170
000910510 0247_ $$2WOS$$aWOS:000849101700001
000910510 037__ $$aFZJ-2022-03893
000910510 082__ $$a530
000910510 1001_ $$0P:(DE-HGF)0$$aFan, H. C.$$b0
000910510 245__ $$aControl of electron beam polarization in the bubble regime of laser-wakefield acceleration
000910510 260__ $$a[London]$$bIOP$$c2022
000910510 3367_ $$2DRIVER$$aarticle
000910510 3367_ $$2DataCite$$aOutput Types/Journal article
000910510 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1666880031_5222
000910510 3367_ $$2BibTeX$$aARTICLE
000910510 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910510 3367_ $$00$$2EndNote$$aJournal Article
000910510 520__ $$aElectron beam polarization in the bubble regime of the interaction between a high-intensity laser and a longitudinally pre-polarized plasma is investigated by means of the Thomas–Bargmann–Michel–Telegdi equation. Using a test-particle model, the dependence of the accelerated electron polarization on the bubble geometry is analysed in detail. Tracking the polarization dynamics of individual electrons reveals that although the spin direction changes during both the self-injection process and acceleration phase, the former has the biggest impact. For nearly spherical bubbles, the polarization of electron beam persists after capture and acceleration in the bubble. By contrast, for aspherical bubble shapes, the electron beam becomes rapidly depolarized, and the net polarization direction can even reverse in the case of a oblate spheroidal bubble. These findings are confirmed via particle-in-cell simulations.
000910510 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000910510 536__ $$0G:(DE-HGF)POF4-621$$a621 - Accelerator Research and Development (POF4-621)$$cPOF4-621$$fPOF IV$$x1
000910510 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910510 7001_ $$0P:(DE-HGF)0$$aLiu, X. Y.$$b1
000910510 7001_ $$0P:(DE-Juel1)164830$$aLi, X. F.$$b2$$eCorresponding author
000910510 7001_ $$0P:(DE-HGF)0$$aQu, J. F.$$b3
000910510 7001_ $$aYu, Q.$$b4
000910510 7001_ $$00000-0001-7476-8571$$aKong, Q.$$b5
000910510 7001_ $$00000-0001-7746-9462$$aWeng, S. M.$$b6
000910510 7001_ $$aChen, M.$$b7
000910510 7001_ $$0P:(DE-Juel1)131108$$aBüscher, M.$$b8
000910510 7001_ $$0P:(DE-Juel1)132115$$aGibbon, P.$$b9
000910510 7001_ $$00000-0002-5830-2234$$aKawata, S.$$b10
000910510 7001_ $$00000-0002-8823-9993$$aSheng, Z. M.$$b11
000910510 773__ $$0PERI:(DE-600)1464444-7$$a10.1088/1367-2630/ac8951$$gVol. 24, no. 8, p. 083047 -$$n8$$p083047 -$$tNew journal of physics$$v24$$x1367-2630$$y2022
000910510 8564_ $$uhttps://juser.fz-juelich.de/record/910510/files/Fan_2022_New_J._Phys._24_083047.pdf$$yOpenAccess
000910510 909CO $$ooai:juser.fz-juelich.de:910510$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000910510 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164830$$aForschungszentrum Jülich$$b2$$kFZJ
000910510 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131108$$aForschungszentrum Jülich$$b8$$kFZJ
000910510 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132115$$aForschungszentrum Jülich$$b9$$kFZJ
000910510 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000910510 9131_ $$0G:(DE-HGF)POF4-621$$1G:(DE-HGF)POF4-620$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and Technologies$$vAccelerator Research and Development$$x1
000910510 9141_ $$y2022
000910510 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000910510 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000910510 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000910510 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-29
000910510 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910510 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-29
000910510 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-12$$wger
000910510 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEW J PHYS : 2021$$d2022-11-12
000910510 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000910510 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000910510 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-07-19T16:18:19Z
000910510 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-07-19T16:18:19Z
000910510 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-07-19T16:18:19Z
000910510 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-12
000910510 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-12
000910510 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000910510 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000910510 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-12
000910510 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-12
000910510 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000910510 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x1
000910510 980__ $$ajournal
000910510 980__ $$aVDB
000910510 980__ $$aUNRESTRICTED
000910510 980__ $$aI:(DE-Juel1)JSC-20090406
000910510 980__ $$aI:(DE-Juel1)PGI-6-20110106
000910510 9801_ $$aFullTexts