000910511 001__ 910511
000910511 005__ 20230123110707.0
000910511 0247_ $$2doi$$a10.1038/s41535-022-00455-5
000910511 0247_ $$2Handle$$a2128/32171
000910511 0247_ $$2WOS$$aWOS:000786468000002
000910511 037__ $$aFZJ-2022-03894
000910511 082__ $$a530
000910511 1001_ $$00000-0002-8225-7218$$aBac, S.-K.$$b0
000910511 245__ $$aTopological response of the anomalous Hall effect in MnBi2Te4 due to magnetic canting
000910511 260__ $$a[London]$$bNature Publishing Group$$c2022
000910511 3367_ $$2DRIVER$$aarticle
000910511 3367_ $$2DataCite$$aOutput Types/Journal article
000910511 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1666880136_29605
000910511 3367_ $$2BibTeX$$aARTICLE
000910511 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910511 3367_ $$00$$2EndNote$$aJournal Article
000910511 520__ $$aThree-dimensional (3D) compensated MnBi2Te4 is antiferromagnetic, but undergoes a spin-flop transition at intermediate fields, resulting in a canted phase before saturation. In this work, we experimentally show that the anomalous Hall effect (AHE) in MnBi2Te4 originates from a topological response that is sensitive to the perpendicular magnetic moment and to its canting angle. Synthesis by molecular beam epitaxy allows us to obtain a large-area quasi-3D 24-layer MnBi2Te4 with near-perfect compensation that hosts the phase diagram observed in bulk which we utilize to probe the AHE. This AHE is seen to exhibit an antiferromagnetic response at low magnetic fields, and a clear evolution at intermediate fields through surface and bulk spin-flop transitions into saturation. Throughout this evolution, the AHE is super-linear versus magnetization rather than the expected linear relationship. We reveal that this discrepancy is related to the canting angle, consistent with the symmetry of the crystal. Our findings bring to light a topological anomalous Hall response that can be found in non-collinear ferromagnetic, and antiferromagnetic phases.
000910511 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000910511 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910511 7001_ $$aKoller, K.$$b1
000910511 7001_ $$0P:(DE-Juel1)169506$$aLux, Fabian$$b2
000910511 7001_ $$aWang, J.$$b3
000910511 7001_ $$00000-0002-2119-820X$$aRiney, L.$$b4
000910511 7001_ $$0P:(DE-HGF)0$$aBorisiak, K.$$b5
000910511 7001_ $$0P:(DE-HGF)0$$aPowers, W.$$b6
000910511 7001_ $$0P:(DE-HGF)0$$aZhukovskyi, M.$$b7
000910511 7001_ $$0P:(DE-HGF)0$$aOrlova, T.$$b8
000910511 7001_ $$0P:(DE-HGF)0$$aDobrowolska, M.$$b9
000910511 7001_ $$0P:(DE-HGF)0$$aFurdyna, J. K.$$b10
000910511 7001_ $$aDilley, N. R.$$b11
000910511 7001_ $$00000-0002-1524-0221$$aRokhinson, L. P.$$b12
000910511 7001_ $$0P:(DE-Juel1)130848$$aMokrousov, Y.$$b13
000910511 7001_ $$00000-0003-0718-5602$$aMcQueeney, R. J.$$b14
000910511 7001_ $$00000-0002-3618-6092$$aHeinonen, O.$$b15
000910511 7001_ $$aLiu, X.$$b16
000910511 7001_ $$00000-0002-6879-9651$$aAssaf, B. A.$$b17$$eCorresponding author
000910511 773__ $$0PERI:(DE-600)2882263-8$$a10.1038/s41535-022-00455-5$$gVol. 7, no. 1, p. 46$$n1$$p46$$tnpj quantum materials$$v7$$x2397-4648$$y2022
000910511 8564_ $$uhttps://juser.fz-juelich.de/record/910511/files/Topological%20response%20of%20the%20anomalous%20Hall%20effect%20in%20MnBi2Te4%20due%20to%20magnetic%20canting.pdf$$yOpenAccess
000910511 909CO $$ooai:juser.fz-juelich.de:910511$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000910511 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130848$$aForschungszentrum Jülich$$b13$$kFZJ
000910511 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000910511 9141_ $$y2022
000910511 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000910511 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-26
000910511 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-08-26
000910511 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910511 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-08-26
000910511 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-26
000910511 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-17
000910511 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-17
000910511 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-10-13T14:19:38Z
000910511 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-10-13T14:19:38Z
000910511 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-10-13T14:19:38Z
000910511 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-17
000910511 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-17
000910511 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-17
000910511 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000910511 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000910511 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000910511 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000910511 980__ $$ajournal
000910511 980__ $$aVDB
000910511 980__ $$aUNRESTRICTED
000910511 980__ $$aI:(DE-Juel1)IAS-1-20090406
000910511 980__ $$aI:(DE-Juel1)PGI-1-20110106
000910511 980__ $$aI:(DE-82)080009_20140620
000910511 980__ $$aI:(DE-82)080012_20140620
000910511 9801_ $$aFullTexts