000910514 001__ 910514
000910514 005__ 20230217124530.0
000910514 0247_ $$2doi$$a10.1103/PhysRevB.105.144432
000910514 0247_ $$2ISSN$$a1098-0121
000910514 0247_ $$2ISSN$$a2469-9977
000910514 0247_ $$2ISSN$$a0163-1829
000910514 0247_ $$2ISSN$$a0556-2805
000910514 0247_ $$2ISSN$$a1095-3795
000910514 0247_ $$2ISSN$$a1538-4489
000910514 0247_ $$2ISSN$$a1550-235X
000910514 0247_ $$2ISSN$$a2469-9950
000910514 0247_ $$2ISSN$$a2469-9969
000910514 0247_ $$2Handle$$a2128/32173
000910514 0247_ $$2WOS$$aWOS:000804073500003
000910514 037__ $$aFZJ-2022-03897
000910514 082__ $$a530
000910514 1001_ $$aSeemann, K. M.$$b0$$eCorresponding author
000910514 245__ $$aMagnetoelastic resonance as a probe for exchange springs at antiferromagnet-ferromagnet interfaces
000910514 260__ $$aWoodbury, NY$$bInst.$$c2022
000910514 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2022-04-26
000910514 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2022-04-01
000910514 3367_ $$2DRIVER$$aarticle
000910514 3367_ $$2DataCite$$aOutput Types/Journal article
000910514 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1666881535_31184
000910514 3367_ $$2BibTeX$$aARTICLE
000910514 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910514 3367_ $$00$$2EndNote$$aJournal Article
000910514 520__ $$aIn prototype ferromagnet-antiferromagnet interfaces we demonstrate that surface acoustic waves can be used to identify complex magnetic phases arising upon evolution of exchange springs in an applied field. Applying sub-GHz surface acoustic waves to study the domain structure of the ferromagnetic layer in exchange-biased bilayers of Ir20Mn80−Co60Fe20B20, we are able to associate the magnetoelastic resonance with the presence of the exchange spin-spirals in both the ferromagnetic and antiferromagnetic layer. Our findings offer a complementary, integrative insight into emergent magnetic materials for applications of noncollinear spin textures in view of low-energy-consumption spintronic devices.
000910514 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000910514 542__ $$2Crossref$$i2022-04-26$$uhttps://link.aps.org/licenses/aps-default-license
000910514 542__ $$2Crossref$$i2023-04-26$$uhttps://link.aps.org/licenses/aps-default-accepted-manuscript-license
000910514 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910514 7001_ $$0P:(DE-HGF)0$$aGomonay, O.$$b1
000910514 7001_ $$0P:(DE-Juel1)130848$$aMokrousov, Yuriy$$b2
000910514 7001_ $$aHörner, A.$$b3
000910514 7001_ $$aValencia, S.$$b4
000910514 7001_ $$00000-0003-2208-4391$$aKlamser, P.$$b5
000910514 7001_ $$00000-0001-6048-480X$$aKronast, F.$$b6
000910514 7001_ $$00000-0002-4841-366X$$aErb, A.$$b7
000910514 7001_ $$00000-0003-2112-8399$$aHindmarch, A. T.$$b8
000910514 7001_ $$aWixforth, A.$$b9
000910514 7001_ $$00000-0003-4812-6393$$aMarrows, C. H.$$b10
000910514 7001_ $$aFischer, P.$$b11
000910514 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.105.144432$$bAmerican Physical Society (APS)$$d2022-04-26$$n14$$p144432$$tPhysical Review B$$v105$$x2469-9950$$y2022
000910514 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.105.144432$$gVol. 105, no. 14, p. 144432$$n14$$p144432$$tPhysical review / B$$v105$$x2469-9950$$y2022
000910514 8564_ $$uhttps://juser.fz-juelich.de/record/910514/files/Magnetoelastic%20resonance%20as%20a%20probe%20for%20exchange%20springs%20at%20antiferromagnet-ferromagnet%20interfaces.pdf$$yOpenAccess
000910514 909CO $$ooai:juser.fz-juelich.de:910514$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000910514 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130848$$aForschungszentrum Jülich$$b2$$kFZJ
000910514 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000910514 9141_ $$y2022
000910514 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-10-13
000910514 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-10-13
000910514 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-10-13
000910514 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-10-13
000910514 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000910514 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2018$$d2020-10-13
000910514 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-10-13
000910514 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-10-13
000910514 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-10-13
000910514 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910514 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-10-13
000910514 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-10-13
000910514 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-10-13
000910514 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-10-13
000910514 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000910514 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000910514 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2
000910514 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x3
000910514 980__ $$ajournal
000910514 980__ $$aVDB
000910514 980__ $$aUNRESTRICTED
000910514 980__ $$aI:(DE-Juel1)IAS-1-20090406
000910514 980__ $$aI:(DE-Juel1)PGI-1-20110106
000910514 980__ $$aI:(DE-82)080012_20140620
000910514 980__ $$aI:(DE-82)080009_20140620
000910514 9801_ $$aFullTexts
000910514 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4960952
000910514 999C5 $$1R. F. Wiegert$$2Crossref$$oR. F. Wiegert IEEE Ultrasonics Symposium 1988$$tIEEE Ultrasonics Symposium$$y1988
000910514 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.106.117601
000910514 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1109/T-SU.1985.31611
000910514 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1109/58.9328
000910514 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.340608
000910514 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.5000080
000910514 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-017-00456-0
000910514 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1557/mrs.2018.258
000910514 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.124.137202
000910514 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.58.12193
000910514 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.108.107203
000910514 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.73.054416
000910514 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms1978
000910514 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jallcom.2010.03.141
000910514 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.107.086603
000910514 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.84.3466
000910514 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.80.014415
000910514 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0304-8853(98)00266-2
000910514 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1121/1.385566
000910514 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3521289
000910514 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.108.077201
000910514 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/sia.3561
000910514 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.5518/1135