000910515 001__ 910515
000910515 005__ 20240226075334.0
000910515 0247_ $$2doi$$a10.1002/spe.3075
000910515 0247_ $$2ISSN$$a0038-0644
000910515 0247_ $$2ISSN$$a1097-024X
000910515 0247_ $$2Handle$$a2128/33194
000910515 0247_ $$2WOS$$aWOS:000756126400001
000910515 037__ $$aFZJ-2022-03898
000910515 082__ $$a004
000910515 1001_ $$00000-0002-8279-868X$$aDröge, Bob$$b0$$eCorresponding author
000910515 245__ $$aEESSI: A cross‐platform ready‐to‐use optimised scientific software stack
000910515 260__ $$aChichester [u.a.]$$bWiley$$c2023
000910515 3367_ $$2DRIVER$$aarticle
000910515 3367_ $$2DataCite$$aOutput Types/Journal article
000910515 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1671205178_1573
000910515 3367_ $$2BibTeX$$aARTICLE
000910515 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910515 3367_ $$00$$2EndNote$$aJournal Article
000910515 520__ $$aGetting scientific software installed correctly and ensuring it performs well has been a ubiquitous problem for several decades now, which is compounded currently by the changing landscape of computational science with the (re-)emergence of different microprocessor families, and the expansion to additional scientific domains like artificial intelligence and next-generation sequencing. The European Environment for Scientific Software Installations (EESSI) project aims to provide a ready-to-use stack of scientific software installations that can be leveraged easily on a variety of platforms, ranging from personal workstations to cloud environments and supercomputer infrastructure, without making compromises with respect to performance. In this article, we provide a detailed overview of the project, highlight potential use cases, and demonstrate that the performance of the provided scientific software installations can be competitive with system-specific installations.
000910515 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000910515 536__ $$0G:(EU-Grant)800858$$aICEI - Interactive Computing E-Infrastructure for the Human Brain Project (800858)$$c800858$$fH2020-SGA-INFRA-FETFLAG-HBP$$x1
000910515 536__ $$0G:(EU-Grant)676531$$aE-CAM - An e-infrastructure for software, training and consultancy in simulation and modelling (676531)$$c676531$$fH2020-EINFRA-2015-1$$x2
000910515 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910515 7001_ $$0P:(DE-HGF)0$$aHolanda Rusu, Victor$$b1
000910515 7001_ $$00000-0001-8034-648X$$aHoste, Kenneth$$b2
000910515 7001_ $$00000-0003-4407-6675$$aLeeuwen, Caspar$$b3
000910515 7001_ $$0P:(DE-Juel1)143791$$aO'Cais, Alan$$b4
000910515 7001_ $$00000-0001-8366-6868$$aRöblitz, Thomas$$b5
000910515 770__ $$aNew Trends in High-Performance Computing: Software Systems and Applications
000910515 773__ $$0PERI:(DE-600)1500326-7$$a10.1002/spe.3075$$gp. spe.3075$$n1$$p176-210$$tSoftware <Chichester>$$v53$$x0038-0644$$y2023
000910515 8564_ $$uhttps://juser.fz-juelich.de/record/910515/files/Softw%20Pract%20Exp%20-%202022%20-%20Dr%20ge%20-%20EESSI%20A%20cross%E2%80%90platform%20ready%E2%80%90to%E2%80%90use%20optimised%20scientific%20software%20stack.pdf$$yOpenAccess
000910515 909CO $$ooai:juser.fz-juelich.de:910515$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000910515 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143791$$aForschungszentrum Jülich$$b4$$kFZJ
000910515 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000910515 9141_ $$y2023
000910515 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000910515 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-31$$wger
000910515 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-31
000910515 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910515 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-31
000910515 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOFTWARE PRACT EXPER : 2022$$d2023-08-25
000910515 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-25
000910515 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-25
000910515 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-25
000910515 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-25
000910515 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-25
000910515 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-25
000910515 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-25
000910515 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000910515 980__ $$ajournal
000910515 980__ $$aVDB
000910515 980__ $$aUNRESTRICTED
000910515 980__ $$aI:(DE-Juel1)JSC-20090406
000910515 9801_ $$aFullTexts