001     910515
005     20240226075334.0
024 7 _ |a 10.1002/spe.3075
|2 doi
024 7 _ |a 0038-0644
|2 ISSN
024 7 _ |a 1097-024X
|2 ISSN
024 7 _ |a 2128/33194
|2 Handle
024 7 _ |a WOS:000756126400001
|2 WOS
037 _ _ |a FZJ-2022-03898
082 _ _ |a 004
100 1 _ |a Dröge, Bob
|0 0000-0002-8279-868X
|b 0
|e Corresponding author
245 _ _ |a EESSI: A cross‐platform ready‐to‐use optimised scientific software stack
260 _ _ |a Chichester [u.a.]
|c 2023
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1671205178_1573
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Getting scientific software installed correctly and ensuring it performs well has been a ubiquitous problem for several decades now, which is compounded currently by the changing landscape of computational science with the (re-)emergence of different microprocessor families, and the expansion to additional scientific domains like artificial intelligence and next-generation sequencing. The European Environment for Scientific Software Installations (EESSI) project aims to provide a ready-to-use stack of scientific software installations that can be leveraged easily on a variety of platforms, ranging from personal workstations to cloud environments and supercomputer infrastructure, without making compromises with respect to performance. In this article, we provide a detailed overview of the project, highlight potential use cases, and demonstrate that the performance of the provided scientific software installations can be competitive with system-specific installations.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
536 _ _ |a ICEI - Interactive Computing E-Infrastructure for the Human Brain Project (800858)
|0 G:(EU-Grant)800858
|c 800858
|f H2020-SGA-INFRA-FETFLAG-HBP
|x 1
536 _ _ |a E-CAM - An e-infrastructure for software, training and consultancy in simulation and modelling (676531)
|0 G:(EU-Grant)676531
|c 676531
|f H2020-EINFRA-2015-1
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Holanda Rusu, Victor
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hoste, Kenneth
|0 0000-0001-8034-648X
|b 2
700 1 _ |a Leeuwen, Caspar
|0 0000-0003-4407-6675
|b 3
700 1 _ |a O'Cais, Alan
|0 P:(DE-Juel1)143791
|b 4
700 1 _ |a Röblitz, Thomas
|0 0000-0001-8366-6868
|b 5
770 _ _ |a New Trends in High-Performance Computing: Software Systems and Applications
773 _ _ |a 10.1002/spe.3075
|g p. spe.3075
|0 PERI:(DE-600)1500326-7
|n 1
|p 176-210
|t Software
|v 53
|y 2023
|x 0038-0644
856 4 _ |u https://juser.fz-juelich.de/record/910515/files/Softw%20Pract%20Exp%20-%202022%20-%20Dr%20ge%20-%20EESSI%20A%20cross%E2%80%90platform%20ready%E2%80%90to%E2%80%90use%20optimised%20scientific%20software%20stack.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:910515
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)143791
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
914 1 _ |y 2023
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-31
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-31
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-31
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOFTWARE PRACT EXPER : 2022
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-08-25
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-25
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-25
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21