001     910518
005     20230123110708.0
024 7 _ |a 10.1103/PhysRevB.105.165431
|2 doi
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 2469-9977
|2 ISSN
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1538-4489
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9950
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 2128/32192
|2 Handle
024 7 _ |a WOS:000806812400001
|2 WOS
037 _ _ |a FZJ-2022-03901
082 _ _ |a 530
100 1 _ |a Wang, Jianjun
|0 P:(DE-Juel1)179392
|b 0
245 _ _ |a Dependency of sliding friction for two-dimensional systems on electronegativity
260 _ _ |a Woodbury, NY
|c 2022
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1666955333_10383
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We study the role of electronegativity in sliding friction for five different two dimensional(2D) monolayer systems using density functional theory (DFT) with van der Waals (vdW)corrections. We show that the friction between the commensurate 2D layered systems dependsstrongly on the electronegativity difference of the involved atoms. All the 2D layered structuresexhibit almost the same magnitude of friction force when sliding along the nonpolar path,independent of the material and the surface structures. In contrast, for sliding friction along thepolar path, the friction force obeys a universal linear scaling law as a function of theelectronegativity difference of its constituent atoms. Further analyses demonstrate that atomicdipoles in the 2D monolayers induced by the electronegativity difference enhance the corrugation ofcharge distribution and increase sliding barrier accordingly. Our studies revealthat electronegativity plays an important role in friction of low dimensional systems, and willprovide a strategy for designing nanoscale devices further.Keywords: Electronegativity; Friction; Two-dimensional (2D) monolayer; Density functionaltheory (DFT)
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Tiwari, Avinash
|0 P:(DE-Juel1)178036
|b 1
700 1 _ |a Gao, Jie
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Huang, Yang
|0 0000-0001-5255-0627
|b 3
700 1 _ |a Jia, Yu
|b 4
|e Corresponding author
700 1 _ |a Persson, Bo
|0 P:(DE-Juel1)130885
|b 5
773 _ _ |a 10.1103/PhysRevB.105.165431
|g Vol. 105, no. 16, p. 165431
|0 PERI:(DE-600)2844160-6
|n 16
|p 165431
|t Physical review / B
|v 105
|y 2022
|x 1098-0121
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/910518/files/Dependency_of_Sliding_Friction_for_Two_Dimensional.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/910518/files/PhysRevB.105.165431.pdf
909 C O |o oai:juser.fz-juelich.de:910518
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)179392
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130885
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2021-05-04
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-11
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-11
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2021
|d 2022-11-11
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-11
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 2
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a I:(DE-82)080009_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21