000910522 001__ 910522
000910522 005__ 20230307161621.0
000910522 0247_ $$2doi$$a10.1038/s41699-022-00318-4
000910522 0247_ $$2Handle$$a2128/32186
000910522 0247_ $$2WOS$$aWOS:000814256800001
000910522 037__ $$aFZJ-2022-03905
000910522 082__ $$a670
000910522 1001_ $$0P:(DE-Juel1)176246$$aBui, Minh$$b0$$eCorresponding author
000910522 245__ $$aLow-energy Se ion implantation in MoS2 monolayers
000910522 260__ $$aLondon$$bNature Publishing Group$$c2022
000910522 3367_ $$2DRIVER$$aarticle
000910522 3367_ $$2DataCite$$aOutput Types/Journal article
000910522 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1677668881_17248
000910522 3367_ $$2BibTeX$$aARTICLE
000910522 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910522 3367_ $$00$$2EndNote$$aJournal Article
000910522 500__ $$aVolkswagenstigftung project 93425 "New single photon sources by engineering monolayer-thick semiconductors on the atomic scale".
000910522 520__ $$aIn this work, we study ultra-low energy implantation into MoS2 monolayers to evaluate the potential of the technique in two-dimensional materials technology. We use 80Se+ ions at the energy of 20 eV and with fluences up to 5.0·1014 cm−2. Raman spectra of the implanted films show that the implanted ions are predominantly incorporated at the sulfur sites and MoS2−2xSe2x alloys are formed, indicating high ion retention rates, in agreement with the predictions of molecular dynamics simulations of Se ion irradiation on MoS2 monolayers. We found that the ion retention rate is improved when implantation is performed at an elevated temperature of the target monolayers. Photoluminescence spectra reveal the presence of defects, which are mostly removed by post-implantation annealing at 200 °C, suggesting that, in addition to the Se atoms in the substitutional positions, weakly bound Se adatoms are the most common defects introduced by implantation at this ion energy.
000910522 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000910522 536__ $$0G:(DE-HGF)POF4-5224$$a5224 - Quantum Networking (POF4-522)$$cPOF4-522$$fPOF IV$$x1
000910522 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910522 7001_ $$0P:(DE-Juel1)171929$$aRost, Stefan$$b1
000910522 7001_ $$aAuge, Manuel$$b2
000910522 7001_ $$0P:(DE-Juel1)167206$$aTu, Jhih-Sian$$b3
000910522 7001_ $$0P:(DE-Juel1)173906$$azhou, lanqing$$b4
000910522 7001_ $$0P:(DE-Juel1)145750$$aAguilera, Irene$$b5
000910522 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b6
000910522 7001_ $$00000-0003-3060-4369$$aGhorbani-Asl, Mahdi$$b7
000910522 7001_ $$aKrasheninnikov, Arkady V.$$b8
000910522 7001_ $$aHashemi, Arsalan$$b9
000910522 7001_ $$00000-0002-0970-0957$$aKomsa, Hannu-Pekka$$b10
000910522 7001_ $$0P:(DE-Juel1)157631$$aJin, Lei$$b11
000910522 7001_ $$0P:(DE-Juel1)169107$$aKibkalo, Lidia$$b12
000910522 7001_ $$aO’Connell, Eoghan N.$$b13
000910522 7001_ $$00000-0001-7466-2283$$aRamasse, Quentin M.$$b14
000910522 7001_ $$aBangert, Ursel$$b15
000910522 7001_ $$aHofsäss, Hans C.$$b16
000910522 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b17
000910522 7001_ $$0P:(DE-Juel1)145316$$aKardynal, Beata$$b18
000910522 773__ $$0PERI:(DE-600)2893016-2$$a10.1038/s41699-022-00318-4$$gVol. 6, no. 1, p. 42$$n1$$p42$$tnpj 2D materials and applications$$v6$$x2397-7132$$y2022
000910522 8564_ $$uhttps://juser.fz-juelich.de/record/910522/files/Low-energy%20Se%20ion%20implantation%20in%20MoS2%20monolayers.pdf$$yOpenAccess
000910522 8767_ $$8SN-2022-00413-b$$92022-10-07$$a1200185158$$d2022-11-21$$eAPC$$jZahlung erfolgt$$lDEAL: Springer
000910522 909CO $$ooai:juser.fz-juelich.de:910522$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000910522 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176246$$aForschungszentrum Jülich$$b0$$kFZJ
000910522 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171929$$aForschungszentrum Jülich$$b1$$kFZJ
000910522 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167206$$aForschungszentrum Jülich$$b3$$kFZJ
000910522 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173906$$aForschungszentrum Jülich$$b4$$kFZJ
000910522 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145750$$aForschungszentrum Jülich$$b5$$kFZJ
000910522 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b6$$kFZJ
000910522 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157631$$aForschungszentrum Jülich$$b11$$kFZJ
000910522 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169107$$aForschungszentrum Jülich$$b12$$kFZJ
000910522 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b17$$kFZJ
000910522 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)125588$$aRWTH Aachen$$b17$$kRWTH
000910522 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145316$$aForschungszentrum Jülich$$b18$$kFZJ
000910522 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)145316$$aRWTH Aachen$$b18$$kRWTH
000910522 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000910522 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5224$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x1
000910522 9141_ $$y2022
000910522 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-25
000910522 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000910522 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-25
000910522 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-08-25
000910522 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910522 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-08-25
000910522 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000910522 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000910522 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-10-13T14:21:06Z
000910522 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-10-13T14:21:06Z
000910522 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-10-13T14:21:06Z
000910522 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000910522 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000910522 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11
000910522 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000910522 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000910522 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000910522 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000910522 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000910522 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000910522 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x4
000910522 980__ $$ajournal
000910522 980__ $$aVDB
000910522 980__ $$aI:(DE-Juel1)IAS-1-20090406
000910522 980__ $$aI:(DE-Juel1)PGI-1-20110106
000910522 980__ $$aI:(DE-82)080009_20140620
000910522 980__ $$aI:(DE-82)080012_20140620
000910522 980__ $$aI:(DE-Juel1)PGI-9-20110106
000910522 980__ $$aAPC
000910522 980__ $$aUNRESTRICTED
000910522 9801_ $$aAPC
000910522 9801_ $$aFullTexts