000910525 001__ 910525
000910525 005__ 20230123110708.0
000910525 0247_ $$2doi$$a10.1007/s10766-022-00726-5
000910525 0247_ $$2ISSN$$a0091-7036
000910525 0247_ $$2ISSN$$a0885-7458
000910525 0247_ $$2ISSN$$a1573-7640
000910525 0247_ $$2Handle$$a2128/32196
000910525 0247_ $$2WOS$$aWOS:000771886000001
000910525 037__ $$aFZJ-2022-03907
000910525 082__ $$a004
000910525 1001_ $$00000-0001-6514-4601$$aErnstsson, August$$b0$$eCorresponding author
000910525 245__ $$aA Deterministic Portable Parallel Pseudo-Random Number Generator for Pattern-Based Programming of Heterogeneous Parallel Systems
000910525 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V.$$c2022
000910525 3367_ $$2DRIVER$$aarticle
000910525 3367_ $$2DataCite$$aOutput Types/Journal article
000910525 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1666956304_10773
000910525 3367_ $$2BibTeX$$aARTICLE
000910525 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910525 3367_ $$00$$2EndNote$$aJournal Article
000910525 520__ $$aSkePU is a pattern-based high-level programming model for transparent program execution on heterogeneous parallel computing systems. A key feature of SkePU is that, in general, the selection of the execution platform for a skeleton-based function call need not be determined statically. On single-node systems, SkePU can select among CPU, multithreaded CPU, single or multi-GPU execution. Many scientific applications use pseudo-random number generators (PRNGs) as part of the computation. In the interest of correctness and debugging, deterministic parallel execution is a desirable property, which however requires a deterministically parallelized pseudo-random number generator. We present the API and implementation of a deterministic, portable parallel PRNG extension to SkePU that is scalable by design and exhibits the same behavior regardless where and with how many resources it is executed. We evaluate it with four probabilistic applications and show that the PRNG enables scalability on both multi-core CPU and GPU resources, and hence supports the universal portability of SkePU code even in the presence of PRNG calls, while source code complexity is reduced.
000910525 536__ $$0G:(DE-HGF)POF4-5122$$a5122 - Future Computing & Big Data Systems (POF4-512)$$cPOF4-512$$fPOF IV$$x0
000910525 536__ $$0G:(EU-Grant)801015$$aEXA2PRO - Enhancing Programmability and boosting Performance Portability for Exascale Computing Systems (801015)$$c801015$$fH2020-FETHPC-2017$$x1
000910525 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910525 7001_ $$0P:(DE-Juel1)136870$$aVandenbergen, Nicolas$$b1
000910525 7001_ $$0P:(DE-HGF)0$$aKeller, Jörg$$b2
000910525 7001_ $$0P:(DE-HGF)0$$aKessler, Christoph$$b3
000910525 773__ $$0PERI:(DE-600)2006577-2$$a10.1007/s10766-022-00726-5$$gVol. 50, no. 3-4, p. 319 - 340$$n3-4$$p319 - 340$$tInternational journal of parallel programming$$v50$$x0091-7036$$y2022
000910525 8564_ $$uhttps://juser.fz-juelich.de/record/910525/files/s10766-022-00726-5.pdf$$yOpenAccess
000910525 909CO $$ooai:juser.fz-juelich.de:910525$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000910525 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136870$$aForschungszentrum Jülich$$b1$$kFZJ
000910525 9131_ $$0G:(DE-HGF)POF4-512$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5122$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vSupercomputing & Big Data Infrastructures$$x0
000910525 9141_ $$y2022
000910525 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000910525 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000910525 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000910525 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-01-30$$wger
000910525 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910525 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-18$$wger
000910525 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-18
000910525 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-18
000910525 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-18
000910525 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-18
000910525 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-18
000910525 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-18
000910525 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-18
000910525 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000910525 980__ $$ajournal
000910525 980__ $$aVDB
000910525 980__ $$aUNRESTRICTED
000910525 980__ $$aI:(DE-Juel1)JSC-20090406
000910525 9801_ $$aFullTexts