001     910525
005     20230123110708.0
024 7 _ |a 10.1007/s10766-022-00726-5
|2 doi
024 7 _ |a 0091-7036
|2 ISSN
024 7 _ |a 0885-7458
|2 ISSN
024 7 _ |a 1573-7640
|2 ISSN
024 7 _ |a 2128/32196
|2 Handle
024 7 _ |a WOS:000771886000001
|2 WOS
037 _ _ |a FZJ-2022-03907
082 _ _ |a 004
100 1 _ |a Ernstsson, August
|0 0000-0001-6514-4601
|b 0
|e Corresponding author
245 _ _ |a A Deterministic Portable Parallel Pseudo-Random Number Generator for Pattern-Based Programming of Heterogeneous Parallel Systems
260 _ _ |a Dordrecht [u.a.]
|c 2022
|b Springer Science + Business Media B.V.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1666956304_10773
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a SkePU is a pattern-based high-level programming model for transparent program execution on heterogeneous parallel computing systems. A key feature of SkePU is that, in general, the selection of the execution platform for a skeleton-based function call need not be determined statically. On single-node systems, SkePU can select among CPU, multithreaded CPU, single or multi-GPU execution. Many scientific applications use pseudo-random number generators (PRNGs) as part of the computation. In the interest of correctness and debugging, deterministic parallel execution is a desirable property, which however requires a deterministically parallelized pseudo-random number generator. We present the API and implementation of a deterministic, portable parallel PRNG extension to SkePU that is scalable by design and exhibits the same behavior regardless where and with how many resources it is executed. We evaluate it with four probabilistic applications and show that the PRNG enables scalability on both multi-core CPU and GPU resources, and hence supports the universal portability of SkePU code even in the presence of PRNG calls, while source code complexity is reduced.
536 _ _ |a 5122 - Future Computing & Big Data Systems (POF4-512)
|0 G:(DE-HGF)POF4-5122
|c POF4-512
|f POF IV
|x 0
536 _ _ |a EXA2PRO - Enhancing Programmability and boosting Performance Portability for Exascale Computing Systems (801015)
|0 G:(EU-Grant)801015
|c 801015
|f H2020-FETHPC-2017
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Vandenbergen, Nicolas
|0 P:(DE-Juel1)136870
|b 1
700 1 _ |a Keller, Jörg
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kessler, Christoph
|0 P:(DE-HGF)0
|b 3
773 _ _ |a 10.1007/s10766-022-00726-5
|g Vol. 50, no. 3-4, p. 319 - 340
|0 PERI:(DE-600)2006577-2
|n 3-4
|p 319 - 340
|t International journal of parallel programming
|v 50
|y 2022
|x 0091-7036
856 4 _ |u https://juser.fz-juelich.de/record/910525/files/s10766-022-00726-5.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:910525
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)136870
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-512
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Supercomputing & Big Data Infrastructures
|9 G:(DE-HGF)POF4-5122
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-18
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-18
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-18
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21