000910526 001__ 910526
000910526 005__ 20230123110708.0
000910526 0247_ $$2doi$$a10.1021/acs.nanolett.2c00562
000910526 0247_ $$2ISSN$$a1530-6984
000910526 0247_ $$2ISSN$$a1530-6992
000910526 0247_ $$2Handle$$a2128/32197
000910526 0247_ $$2pmid$$a35699946
000910526 0247_ $$2WOS$$aWOS:000820382100001
000910526 037__ $$aFZJ-2022-03908
000910526 082__ $$a660
000910526 1001_ $$00000-0001-8214-7118$$aAlahmed, Laith$$b0
000910526 245__ $$aEvidence of Magnon-Mediated Orbital Magnetism in a Quasi-2D Topological Magnon Insulator
000910526 260__ $$aWashington, DC$$bACS Publ.$$c2022
000910526 3367_ $$2DRIVER$$aarticle
000910526 3367_ $$2DataCite$$aOutput Types/Journal article
000910526 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1666956623_8013
000910526 3367_ $$2BibTeX$$aARTICLE
000910526 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910526 3367_ $$00$$2EndNote$$aJournal Article
000910526 520__ $$aWe explore spin dynamics in Cu(1,3-bdc), a quasi-2D topological magnon insulator. The results show that the thermal evolution of the Landé g factor (g) is anisotropic: gin-plane decreases while gout-of-plane increases with increasing temperature T. Moreover, the anisotropy of the g factor (Δg) and the anisotropy of saturation magnetization (ΔMs) are correlated below 4 K, but they diverge above 4 K. We show that the electronic orbital moment contributes to the g anisotropy at lower T, while the topological orbital moment induced by thermally excited spin chirality dictates the g anisotropy at higher T. Our work suggests an interplay among topology, spin chirality, and orbital magnetism in Cu(1,3-bdc).
000910526 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000910526 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910526 7001_ $$0P:(DE-HGF)0$$aZhang, Xiaoqian$$b1
000910526 7001_ $$0P:(DE-HGF)0$$aWen, Jiajia$$b2$$eCorresponding author
000910526 7001_ $$0P:(DE-HGF)0$$aXiong, Yuzan$$b3
000910526 7001_ $$0P:(DE-HGF)0$$aLi, Yi$$b4$$eCorresponding author
000910526 7001_ $$0P:(DE-Juel1)174385$$aZhang, Lichuan$$b5
000910526 7001_ $$0P:(DE-Juel1)169506$$aLux, Fabian$$b6
000910526 7001_ $$0P:(DE-Juel1)130643$$aFreimuth, Frank$$b7$$ufzj
000910526 7001_ $$0P:(DE-HGF)0$$aMahdi, Muntasir$$b8
000910526 7001_ $$0P:(DE-Juel1)130848$$aMokrousov, Yuriy$$b9$$eCorresponding author$$ufzj
000910526 7001_ $$00000-0003-2127-2374$$aNovosad, Valentine$$b10
000910526 7001_ $$0P:(DE-HGF)0$$aKwok, Wai-Kwong$$b11
000910526 7001_ $$0P:(DE-HGF)0$$aYu, Dapeng$$b12
000910526 7001_ $$0P:(DE-HGF)0$$aZhang, Wei$$b13$$eCorresponding author
000910526 7001_ $$0P:(DE-HGF)0$$aLee, Young S.$$b14
000910526 7001_ $$00000-0001-8491-0199$$aLi, Peng$$b15$$eCorresponding author
000910526 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/acs.nanolett.2c00562$$gVol. 22, no. 13, p. 5114 - 5119$$n13$$p5114 - 5119$$tNano letters$$v22$$x1530-6984$$y2022
000910526 8564_ $$uhttps://juser.fz-juelich.de/record/910526/files/acs.nanolett.2c00562-1.pdf
000910526 8564_ $$uhttps://juser.fz-juelich.de/record/910526/files/2206.02191.pdf$$yOpenAccess
000910526 909CO $$ooai:juser.fz-juelich.de:910526$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000910526 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174385$$aForschungszentrum Jülich$$b5$$kFZJ
000910526 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130643$$aForschungszentrum Jülich$$b7$$kFZJ
000910526 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130848$$aForschungszentrum Jülich$$b9$$kFZJ
000910526 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000910526 9141_ $$y2022
000910526 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000910526 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000910526 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910526 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-30
000910526 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-30
000910526 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-30
000910526 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-30
000910526 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-30
000910526 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2021$$d2022-11-30
000910526 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-30
000910526 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-30
000910526 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2021$$d2022-11-30
000910526 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000910526 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000910526 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000910526 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000910526 980__ $$ajournal
000910526 980__ $$aVDB
000910526 980__ $$aUNRESTRICTED
000910526 980__ $$aI:(DE-Juel1)IAS-1-20090406
000910526 980__ $$aI:(DE-Juel1)PGI-1-20110106
000910526 980__ $$aI:(DE-82)080009_20140620
000910526 980__ $$aI:(DE-82)080012_20140620
000910526 9801_ $$aFullTexts