Hauptseite > Publikationsdatenbank > Evidence of Magnon-Mediated Orbital Magnetism in a Quasi-2D Topological Magnon Insulator > print |
001 | 910526 | ||
005 | 20230123110708.0 | ||
024 | 7 | _ | |a 10.1021/acs.nanolett.2c00562 |2 doi |
024 | 7 | _ | |a 1530-6984 |2 ISSN |
024 | 7 | _ | |a 1530-6992 |2 ISSN |
024 | 7 | _ | |a 2128/32197 |2 Handle |
024 | 7 | _ | |a 35699946 |2 pmid |
024 | 7 | _ | |a WOS:000820382100001 |2 WOS |
037 | _ | _ | |a FZJ-2022-03908 |
082 | _ | _ | |a 660 |
100 | 1 | _ | |a Alahmed, Laith |0 0000-0001-8214-7118 |b 0 |
245 | _ | _ | |a Evidence of Magnon-Mediated Orbital Magnetism in a Quasi-2D Topological Magnon Insulator |
260 | _ | _ | |a Washington, DC |c 2022 |b ACS Publ. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1666956623_8013 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a We explore spin dynamics in Cu(1,3-bdc), a quasi-2D topological magnon insulator. The results show that the thermal evolution of the Landé g factor (g) is anisotropic: gin-plane decreases while gout-of-plane increases with increasing temperature T. Moreover, the anisotropy of the g factor (Δg) and the anisotropy of saturation magnetization (ΔMs) are correlated below 4 K, but they diverge above 4 K. We show that the electronic orbital moment contributes to the g anisotropy at lower T, while the topological orbital moment induced by thermally excited spin chirality dictates the g anisotropy at higher T. Our work suggests an interplay among topology, spin chirality, and orbital magnetism in Cu(1,3-bdc). |
536 | _ | _ | |a 5211 - Topological Matter (POF4-521) |0 G:(DE-HGF)POF4-5211 |c POF4-521 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Zhang, Xiaoqian |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Wen, Jiajia |0 P:(DE-HGF)0 |b 2 |e Corresponding author |
700 | 1 | _ | |a Xiong, Yuzan |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Li, Yi |0 P:(DE-HGF)0 |b 4 |e Corresponding author |
700 | 1 | _ | |a Zhang, Lichuan |0 P:(DE-Juel1)174385 |b 5 |
700 | 1 | _ | |a Lux, Fabian |0 P:(DE-Juel1)169506 |b 6 |
700 | 1 | _ | |a Freimuth, Frank |0 P:(DE-Juel1)130643 |b 7 |u fzj |
700 | 1 | _ | |a Mahdi, Muntasir |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Mokrousov, Yuriy |0 P:(DE-Juel1)130848 |b 9 |e Corresponding author |u fzj |
700 | 1 | _ | |a Novosad, Valentine |0 0000-0003-2127-2374 |b 10 |
700 | 1 | _ | |a Kwok, Wai-Kwong |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Yu, Dapeng |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Zhang, Wei |0 P:(DE-HGF)0 |b 13 |e Corresponding author |
700 | 1 | _ | |a Lee, Young S. |0 P:(DE-HGF)0 |b 14 |
700 | 1 | _ | |a Li, Peng |0 0000-0001-8491-0199 |b 15 |e Corresponding author |
773 | _ | _ | |a 10.1021/acs.nanolett.2c00562 |g Vol. 22, no. 13, p. 5114 - 5119 |0 PERI:(DE-600)2048866-X |n 13 |p 5114 - 5119 |t Nano letters |v 22 |y 2022 |x 1530-6984 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/910526/files/acs.nanolett.2c00562-1.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/910526/files/2206.02191.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:910526 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)174385 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)130643 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)130848 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-521 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Materials |9 G:(DE-HGF)POF4-5211 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-30 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-30 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-30 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NANO LETT : 2021 |d 2022-11-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-30 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-30 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b NANO LETT : 2021 |d 2022-11-30 |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-1-20090406 |k IAS-1 |l Quanten-Theorie der Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 1 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 2 |
920 | 1 | _ | |0 I:(DE-82)080012_20140620 |k JARA-HPC |l JARA - HPC |x 3 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IAS-1-20090406 |
980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a I:(DE-82)080012_20140620 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|