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Abstract

When an electric current flow across an interface between two contacting solids a change in the electric potential occur over
the interface. One part of the electric contact resistance is due to the constrictions at asperity contact regions. Barber has
shown that the constriction resistance can be related to the interfacial contact stiffness. I discuss the relation between the
classical (approximate) Holm theory for the constriction resistance and the (exact) theory involving the contact stiffness.
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1 Introduction

b4 B.N.J. PerSSO_n _ The electric contact between metallic bodies is often a weak
b.persson@fz-juelich.de link in electronic devices [1]. Thus surface roughness and
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resistance R = U/I. Holm has developed a theory to predict
the constriction resistance assuming an idealized distribu-
tion of contact regions [2—4]. However, the distribution of
contact regions is in general not known and it is not always
clear how to apply the theory of Holm to practical situations.

Barber has shown that a detailed knowledge of the con-
tact morphology is not necessary for predicting the contact
resistance [5, 6]. Using a very general argument he showed
that the constriction resistance can be related to the mechani-
cal contact stiffness. The latter can be calculated accurately
using e.g. the Persson contact mechanics theory [7—11]. This
theory shows that the contact stiffness often is determined
by the most long-wavelength roughness, which may deform
elastically rather than plastically. In this work I will discuss
the relation between the Holm and Barber approaches to the
contact resistance problem.

2 Surface Roughness Power Spectra

The statistical properties of randomly rough surfaces are
fully determined by the surface roughness power spectrum
C(q) (see Refs. [12—14]). The power spectrum is propor-
tional to the square of the absolute value of the two-dimen-
sional Fourier transform of the surface height function
z = h(x,y). Thus, the power spectra is a function of the
wavevector q = (q,. q,). For surfaces with isotropic rough-
ness C(q) depends only on the magnitude ¢ = |q| =27z /4
of the wavevector. Here A is the wavelength of a roughness
component. From C(q) standard quantities such as the root-
mean-square (rms) roughness amplitude 4, or the rms-
slope ¢ of the surface can be easily calculated.

Most engineering objects have some particular shape,
with otherwise smooth surfaces on the length scale of the
objects. Such surfaces have a power spectra with a small
wavenumber (or long wavelength) roll-off region, and on a
log-log scale C(q) typically looks like the blue line in Fig. 1.
This is in contrast to many natural surfaces, e.g., the surface
of a fractured granite stone, which have roughness on all
length scale up to the linear size of the object. Such surfaces
have power spectra without a roll-off region (see red line in
Fig. 1). Here we will consider surfaces with roll-off regions
unless otherwise stated.

Note that both power spectra in Fig. 1 depend nearly
linearly on the wavenumber for large wavenumber on the
log—log scale. This is typical for self-affine fractal surface
and the slope = —2 — 2H of the lines define the Hurst expo-
nent H (or fractal dimension D; = 3 — H).
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Fig.1 The surface roughness power spectrum of a granite surface
produced by fracture (red) and for the surface of a die casted alu-
minum structure (blue). The roll-off wavenumber ¢, is indicated
(Color figure online)

3 Contact Area and the Average Interfacial
Separation

Consider the contact between two elastic solids with nomi-
nally flat surfaces. Because of surface roughness the contact
will not be complete. As long as the relative contact area
A/A, (Where A is the nominal contact area) is below ~ 0.3
the contact area increases approximately linearly with the
applied squeezing pressure p. Theory and numerical simula-
tions shows that [7, 15-17]

A 2p
A ~ fE*’ (1)
0

where £ is the rms slope of the combined roughness profile
and where the effective elastic modulus £* is determined by
the Young’s elastic modulus and the Poisson ratio of the two
solids via1/E* = (1 —=v)/E; + (1 = v3)/E,.

In many applications the (relative) area of real contact
is very small and the surfaces are separated by an air film
in most places. The resulting gap field (surface separation)
between two solids is very important for many applications,
but for the contact resistance the average gap height (average
surface separation) i is enough. When the applied pressure
p is such that the relative contact area is much less than 1
(but not so small that finite size effects become important),
the average separation i is related to the squeezing pressure
pas[8]

p~ PETeT )

where u, =~ h,,,,/2 and f both are determined by the surface
roughness power spectrum C(q). The theory also predicts



Tribology Letters (2022) 70: 88

Page3of9 88

the probability distribution of stress and surface separation
[10, 11].

4 Interfacial Contact Stiffness

Because of surface roughness an interface of solid con-
tact is usually less stiff than the bulk material, and is often
represented as a layer of (nonlinear) elastic springs. If two
solids with a nominally flat surfaces are squeezed together
with the pressure p the normal interfacial contact stiffness
is defined as K = —dp/di. If the pressure is not too high (as
to approach complete contact) or too low (where finite-size
effects become important) then for elastic contact (2) holds
and
K~ lﬁE*e—ﬁ/uo _r

~ 3)

) Uy

In Fig. 2 we show the calculated result for the contact stiff-
ness over a wide pressure range where both finite-size
effects and approach of complete contact occur [18, 20].
For pressures above the finite-size regime the stiffness is
well approximated by K = (p/ug)exp(cp/E*). In the finite
size region K ~ p'/0+ (see Refs. [18, 19]). The onset of
this low-pressure scaling regime moves to lower pressure
when the roll-off region in the power spectrum increases. In
the finite-size regime the solids makes contact only at the
highest macro asperity [18].
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Fig.2 Red line: The calculated perpendicular interfacial contact stiff-
ness K as a function of the squeezing pressure p (In-In scale). For an
elastic solid with E* = E/(1 — v?) = 100 GPa and with a randomly
rough (self affine fractal) surface with the rms-roughness amplitude
1 pm and Hurst exponent H = 0.8. For pressures above the finite-size
regime the stiffness is well approximated by K = (p/u,)exp(cp/E*)
(green line) and in the finite-size regime K ~ p'/0+™ (see Refs.
[18, 19]). The parameter u, = h,.,,/2 and c is given approximately
as ¢ = (4.4 —33H + 50H?)/(h ) for 0.5 < H <1 (Color figure
online)

Tms
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The contact stiffness theory has been tested experimen-
tally for both for elastically soft materials like rubber [21,
22], and for elastically stiff materials [23, 24]. In both cases
a linear dependency of the stiffness on the squeezing pres-
sure was found with K ~ p/u, with u, = h,,/2. For met-
als plastic flow is expected at the asperity level, which will
effectively increases the stiffness. For elastically stiff solids
and for small applied squeezing forces, finite size effects are
important and the contact resistance will depend nonlinearly
on the applied force as observed in some cases.

Note that #,,,,, and hence the contact stiffness are deter-
mined mainly by the longest wavelength roughness, and in
most cases it is not necessary to study the surface topog-
raphy Ah(x, y) at high magnification in order to obtain the
contact stiffness.

5 Relation Between Contact Stiffness
and Contact Resistance

If an electric potential is applied between two metallic solids
in contact an electric current will flow from one solid to
the other via the asperity contact regions (see Fig. 3). The
interfacial resistance to the current flow is denoted as the
electric contact resistance. The electric contact conductance
a,, is defined by

‘]z = ael(¢l - ¢'2)’ (4)

0=0

Fig.3 The electric current at the interface is highly non-uniform but
becomes nearly uniform a short distance from the interface where the
electric potential is ¢, in solid 1 and ¢, in solid 2
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where J_ is the electric current and ¢ and ¢, are the electric
potential in the two solids close to the interface, at such
distance from the interface that the electric potential is
nearly uniform in the plane parallel to the interface. In a
similar way one can define a thermal contact conductance
by J, = a,(T, — T,), where J, is the thermal current, and
T, — T, the temperature change over the interface. The con-
tact resistance R = 1/(aA,) (here we assume a = ay or a,
are constant in the nominal contact area A).

It has been shown by Barber [5] (see also Refs. [20, 25])
that the constriction contribution to the heat and electric
contact resistance are closely related to the mechanical
contact stiffness K. The fundamental reason for this is
the similarities between the equations determining elastic
deformations and the temperature in thermal contact, and
the electric potential in electric contacts. For the latter two
phenomena conservation of heat and of electric charge
gives V - J = 0 where J = —«k,;, VT for the heat current and
J = —x,, V¢ for the electric current. This gives V2T =0
and V2¢ = 0, respectively. These equations are similar to
the continuum mechanics equation determining elastic
deformations in the static limit. In particular, Boussinesq
has shown that if an elastic halfspace is loaded by a normal
stress, the solution involves a function y which satisfies
VZiy =0. Using this one can show that [5]

« K
aﬁl = ZKeIE (5)
« K
O = 2K[h§’ (6)
where 1/}, = 1/1(;?) + l/Kél]) where Kl and Kl are the

electric conductivity of solid 1 and 2, respectively. The
effective thermal conductivity k;; is defined in a similar way.

Since the mechanical contact stiffness is mainly deter-
mined by the long wavelength roughness, it follows that
the same is true for the constriction contribution to the
electric and the thermal contact resistance. Thus infor-
mation about the short wavelength roughness is in most
cases not needed when determining the electrical and
thermal contact resistance. Since the area of real contact
is determined mainly by the short wavelength roughness,
and since the (elastic) contact area would vanish if rough-
ness down to arbitrary short length scale would exist, one
could theoretically imagine a case where the electric con-
tact resistance is finite even when the area of real con-
tact would vanish. In this case an infinite electric current
density would flow through a zero contact area in such a
way that co X 0 =/ where the electric current / = U/R.
In reality this is of course is impossible since there is a
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short distance cut-off which must be larger than an atomic
dimension. Furthermore, as the contact area decreases the
contact pressure increases (given a fixed normal load) and
finally plastic deformation of the solids will occur and the
contact area saturates.

In many cases plastic deformation does not occur at the
(long) length scales which determines the contact stiffness
and the constriction resistance. In these cases the constriction
resistance is accurately obtained assuming only elastic defor-
mations, even if plastic deformations occur at short length
scales.

The results presented above assume that the contact resist-
ance is entirely due to the current constrictions involving
homogeneous materials and no contamination or oxide films.
Thin oxide and contamination films could affect the electric
contact resistance hugely, unless the local contact pressure is
big enough to break-up these films [3]. If there are no strong
bonds formed at the interface between the solids, contamina-
tion and oxide films could also strongly increase the contact
heat resistance because of weak interfacial coupling, even if
the thermal conductivity of such films are high. In addition,
the non-contact area could be very important for heat transfer
via heat diffusion in the surrounding gas, or via blackbody
heat radiation, which can be strongly enhanced at short surface
separation because of the near field (evanescent) part of the
electromagnetic field [25-27].

6 Electric Contact Resistance

If we assume that the pressure p = p is constant in the nomi-
nal contact area, and if we assume K = p,,/u, and denote the

potential drop over the interface by U = ¢; — ¢, from (4) and
(5) we get
J, =2k E* —U (7
The electric current

A
I=JA)=2k pOEgU 8)

Since pyA, = F is the normal force, we obtain the constric-
tion resistance

_U_FE

=2 =0 ©)

where the resistivity p* = 1/« If the material on both sides
of the junction are identical materials then k), = /2 and
*=2/ky=2pand E* = E/[2(1 —V?)].
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(a)

Fig.4 a The electric current at one asperity contact region. b Most
of the energy dissipation occur in a volume element of linear size a
at the junction, giving the resistence ~ pa/a® = p/a where p is the
resistivity of the bulk material. ¢ If a thin layer (thickness d) of mate-
rial with different resistivity p; occur at the interface there will be an
additional contribution to the resistance given by p;d/A ~ p;d/a*

7 Classical Theory for the Contact
Resistance

The classical theory of the constriction resistance is pre-
sented in the book of Holm [3]. The most basic result is the
resistance of a circular constriction which can be derived in
different ways which we first briefly review.

Consider a circular contact region between two conduct-
ing semi-infinite solids. Figure 4a shows the electric current
flow through the contact region. We assume first that there
is no isolating (oxide or contamination) film at the inter-
face between the two solids. For this case the resistance is
entirely due to the constriction and there are several ways to
estimate this resistance:

(1) There are only two quantities in the problem, namely
the electric resistivity p and the diameter of the circular
constriction a, and the only way to construct a vari-
able with the dimension of the resistance is p/a so we
expect from dimensional arguments

P
R = a; (10)
where « is a number of order unity.

(2) Most of the energy dissipation occur in a volume ele-
ment of linear size a at the junction, where A ~ ais
the cross section area of the junction (see Fig. 4b). The
electric resistance of a cylinder of width a and height
~ais~ paf/A ~ p/a where p is the resistivity of the
bulk material. Thus we expect again a contact resist-
ance of the form (10).

(3) If one assumes that the electric current flow radially
(and angular uniform) away from the constriction then
the contact resistance of a thin shell between r and
¥+ dris pdr/(27r?) and the total contact resistance

[~

. pdr _1p
R~2/—zmz-;; (11

which is again on the form (10).

(4) The exact solution [28] is obtained by solving the
Laplace equation for the electric potential, V2¢ = 0
with appropriate boundary conditions. If a is the diam-
eter of the circular contact region then this approach
gives (10) witha = 1.

We note that the result (10) (with @ = 1) is valid for a circular
contact between two semi-infinite solids with flat surfaces.
Hence it does not take into account the geometrical shape
of the asperities from which the contact region is derived. In
the Barber approach this shape-factor is in principle included
(in the small slope approximation).
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Fig.5 The contact morphology when two nominally flat elastic solids
are squeezed into contact consist in general (unless the contact pres-
sure is very high) of well separated macroasperity contact regions.
Each such region consist of closely spaced contact spots (with the
average diameter a) which are denoted microasperity contact regions.
From the point of view of the contact constriction contribution to the
resistance, the macroasperity contact regions can be considered as
compact islands with a radius D indicated by the dashed circles
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Figure 5 shows the contact morphology when two nomi-
nally flat elastic solids, with surface roughness power spec-
tra with roll-off regions, are squeezed into contact. In gen-
eral, the contact consist (unless the contact pressure is very
high) of many well separated islands (macroasperity contact
regions), each consisting of many closely spaced contact
Spots.

Consider now a macroasperity contact region (diameter
D) and assume that N microasperity contact regions (with
the average diameter a) are uniformly distributed within it
(see Fig. 5). In that case the contact resistance of the mac-
roasperity contact region is approximately [2—4]
~2 4P
R¥Na™D a2
Since in general the microasperity contact regions are
densely distributed within the macroasperity contact region
it is easy to see that the contact resistance is determined
mainly by the term p/D. This result is consistent with the
fact that the constriction resistance is determined by the long
wavelength roughness and hence the internal structure of
the macroasperity contact regions (which is determined by
shorter wavelength roughness) is unimportant.

Consider now a system with N’ macroasperity contact
regions. If the applied load is not too high then the distance
between the macroasperity contact regions will be large and
the interaction between them can be neglected. In that case
the total resistance will be a factor of 1 /N’ smaller than given
by (12):

P
N'D

13)

Since in a large pressure range, where the contact area is
proportional to the contact pressure, N’ is proportional to
the applied normal force F and hence R is proportional to
1/F as also found in the more accurate approached based on
the Barber theory for the contact resistance.

8 Comparing the Expressions
for the Constriction Resistance

Let us compare (9) with (13):

E* P
R~ — s R~ .
2rP o IN'D

The size and the concentration of the macroasperity contact
regions can be estimated using the Greenwood-Williamson
(GW) theory [29] if we assume that the pressure is so small
that the contact regions are separated enough that the elastic
interaction between the contact regions can be neglected. In
fact, the contact stiffness is only (approximately) correctly
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described by the GW theory if the contact regions are sepa-
rated by distances in the order of or larger than the roll-off
wavelength in the power spectrum [30].

Assuming the height probability distribution
P(z) ~ exp(—yz/h,), where y is a number of order unity
(typically y = 2, see [31]), the GW theory predict that

1/2
F = wE*N’Dhrms (14)
3y
If we choose y = (2/3)(27)"/? ~ 1.7 we get from (13)
and (14) the result (9) obtained using the rigorous Barber
approach. We do note, however, if one assumes a Gaussian
distribution of asperity heights, as expected for a randomly
rough surface, then the GW theory does not predict a strict
linear relation between F and N'.

9 Discussion

Assume that there is a thin film, e.g., an oxide film or a con-
tamination film, at the interface between the two solids. We
can estimate the contribution from this film to the contact
resistance using the picture shown in Fig. 4c. Thus, if a thin
layer (thickness d) of material with different resistivity p;
occur at the interface there will be an additional contribution
to the resistance given by
prd

R = — 15

= (15)
and the total resistance is the sum of (15) and the constric-
tion resistance (9):
E* ped

tor X ﬁﬂ*uo +

R

We can use this expression to estimate when the interfacial
film will dominate the resistance. The interfacial film will
give the same contribution as the constrictions when

2F7 70T A

In most cases of interest plastic deformation determine the
area of real contact so that 6pA = F and we get

E* Uy,
pt = op d

In a typical case uy = 1 pm, d = 1 nm, E* =~ 100 GPa and
op ~ 1 GPa giving

pr R 1()5p.

Now most metal oxides have much larger resistivity than
predicted by this equation. For example, aluminum oxide
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has p; ~ 10'2 Qm (see Ref. [32]) compared to the resistiv-
ity of aluminum which is p = 3 x 10~ Qm. However, if the
aluminum oxide film is thin enough electrons can tunnel
through it which could give a smaller effective film resist-
ance. However, estimation of this for typical thickness of
aluminum oxide films (d = 3 nm) still gives a resistivity (of
order p; ~ 10° Qm) much larger than 10°p (see Ref. [33]).
We conclude that unless the oxide film is very imperfect
(with could allow sequential or resonant tunneling, or the
formation of metallic channels [33]), the oxide film must be
broken in order for the constriction resistance to dominate
the contact resistance.

Up to now we have assumed that the power spectrum has
aroll-off and that the nominal contact area is so large (linear
size L) that # /L is a wavenumber in the roll-off region. In
many electrical contacts problem the nominal contact region
is very small in order to get high enough contact pressure to
break (or penetrate) the oxide and contamination films. In
these cases a single macroscopic sized contact region may
form. In particular if one surface has a spherical curvature
(radius of curvature R) the macroscopic contact pressure
would be Hertz-like assuming no plastic deformation on the
macroscopic scale.

If the Hertz theory can be applied the diameter D of the
contact region depends on the normal force as D ~ F'/3 and
in this limit the contact resistance R ~ F~'/3, If instead the
contact area is fully plastically deformed the contact diam-
eter is determined by 4F /(zD?) = op, where oy is the pen-
etration hardness, and the contact resistance R ~ F~1/2,

To avoid or reduce the influence of oxide and contamina-
tion films the contacting surfaces are often covered by thin
gold films. Gold is the only metal which does not react with
atmospheric gases and no oxide (or sulfide) film form on
the surface. In addition, gold is plastically soft (penetration
hardness op = 0.2 GPa) which result in a large contact area
even at relative low contact pressures.

In some application only one of the contacting surfaces
is covered by a gold film. This can result in problems as
illustrated in Fig. 6 for the contact between a gold covered
steel surface and an aluminum surface with an oxide film.
Since the penetration hardness of gold is rather low the
contact stress may not be high enough to break the oxide
film resulting in a huge contact resistance (which may be
determined by electron tunneling through the oxide film).
To break the oxide film I suggest to include hard metallic
particles in the gold film. This would result in very large
local contact stresses which could break the oxide film and
allow gold to be squeezed in contact with the aluminum. If
the electric current is of the DC type and in the right direc-
tion electromigration could fill up the cracks with gold as
indicated in Fig. 6

" gold
—Al-oxide

. - " _hard particles
auBe & . ungsten

Fig.6 A gold covered steel surface squeezed against an aluminum
surface with an oxide film. a The penetration hardness of gold is
rather low (about 200 MPa) and may not be enough to break the
oxide film resulting in a huge contact resistance. b By including hard
metallic particles in the gold film very large local contact stresses
may occur which could break the oxide film and allow gold to be
squeezed in contact with the aluminum

In this paper, we have assumed that the electron trans-
fer in the junctions are diffusive i.e. the electron mean
free path is smaller than the diameter (and length) of the
constructions. For most practical systems this is likely to
be the case owing to oxide fragments and contamination
molecules embedded in the junction material at the con-
tacting interface. This is likely to be the case even for
gold contacts in the normal atmosphere. However, for very
clean metallic surfaces, in particular gold in vacuum con-
dition, very thin conducting junctions may form where
the electron transfer is ballistic rather than diffusive. In
this case the resistance of the individual junctions may
be quantized in the units of 2/(2¢?) ~ 1.3 x 10* Q (where
h is Planck constant and e the electron charge) [34, 35].
However, even in these cases for surfaces with roughness
on many length scales and high enough applied normal
force (as is relevant for most electronic applications) the
contact resistance will be determined by the macroscopic
contact stiffness and the long wavelength surface rough-
ness, and the exact origin of the microscopic electron
transfer (which could be diffusive or ballistic) is irrelevant
for contact resistance.

Finally I note that there are several important effects we
have not discussed above. Thus, the contact resistance result
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in energy dissipation and local temperature increase at the
junctions [3, 36]. Because of the surface roughness the con-
tact will have capacitance, and electrostatic attraction will
occur between the bodies. This electroadhesion depends on
the probability distribution of surface separation [37, 38].
Associated with the conducting constrictions will also be
an inductance [3]

10 Summary and Conclusion

The nature of the electric contact between two contacting
metallic bodies is a fundamental problem which has been
studied for a long time. Almost all studies today are based on
the classical constriction approach which is summarized in
the book of Holm [3]. However, an alternative theory which
is simpler and formally exact was developed by Barber [5].
In this theory the constriction resistance is shown to be pro-
portional to the mechanical contact stiffness which usually is
determined by the most long wavelength roughness. In this
paper I have shown how these two very different approaches
are related. I have presented an analytical formula for the
contact stiffness covering all contact pressures above the
pressure range where finite-size effects are important. I have
also suggested a way to improve the contact resistance when
one of the contacting solids is covered by a gold film, by
incorporating hard metallic (e.g. tungsten) particles in the
gold film, which can break the oxide film on the counter
surface.
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