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Abstract
When an electric current flow across an interface between two contacting solids a change in the electric potential occur over 
the interface. One part of the electric contact resistance is due to the constrictions at asperity contact regions. Barber has 
shown that the constriction resistance can be related to the interfacial contact stiffness. I discuss the relation between the 
classical (approximate) Holm theory for the constriction resistance and the (exact) theory involving the contact stiffness.
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1  Introduction

The electric contact between metallic bodies is often a weak 
link in electronic devices [1]. Thus surface roughness and 
thin oxide or contamination films may have a huge influ-
ence on the nature of an electric contact. In general, if a 
current I flow through the interface between two solids a 
finite voltage drop U occur over the interface. The contact 
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resistance R = U∕I . Holm has developed a theory to predict 
the constriction resistance assuming an idealized distribu-
tion of contact regions [2–4]. However, the distribution of 
contact regions is in general not known and it is not always 
clear how to apply the theory of Holm to practical situations.

Barber has shown that a detailed knowledge of the con-
tact morphology is not necessary for predicting the contact 
resistance [5, 6]. Using a very general argument he showed 
that the constriction resistance can be related to the mechani-
cal contact stiffness. The latter can be calculated accurately 
using e.g. the Persson contact mechanics theory [7–11]. This 
theory shows that the contact stiffness often is determined 
by the most long-wavelength roughness, which may deform 
elastically rather than plastically. In this work I will discuss 
the relation between the Holm and Barber approaches to the 
contact resistance problem.

2 � Surface Roughness Power Spectra

The statistical properties of randomly rough surfaces are 
fully determined by the surface roughness power spectrum 
C(�) (see Refs. [12–14]). The power spectrum is propor-
tional to the square of the absolute value of the two-dimen-
sional Fourier transform of the surface height function 
z = h(x, y) . Thus, the power spectra is a function of the 
wavevector � = (qx, qy) . For surfaces with isotropic rough-
ness C(�) depends only on the magnitude q = |�| = 2�∕� 
of the wavevector. Here � is the wavelength of a roughness 
component. From C(�) standard quantities such as the root-
mean-square (rms) roughness amplitude hrms or the rms-
slope � of the surface can be easily calculated.

Most engineering objects have some particular shape, 
with otherwise smooth surfaces on the length scale of the 
objects. Such surfaces have a power spectra with a small 
wavenumber (or long wavelength) roll-off region, and on a 
log-log scale C(q) typically looks like the blue line in Fig. 1. 
This is in contrast to many natural surfaces, e.g., the surface 
of a fractured granite stone, which have roughness on all 
length scale up to the linear size of the object. Such surfaces 
have power spectra without a roll-off region (see red line in 
Fig. 1). Here we will consider surfaces with roll-off regions 
unless otherwise stated.

Note that both power spectra in Fig. 1 depend nearly 
linearly on the wavenumber for large wavenumber on the 
log–log scale. This is typical for self-affine fractal surface 
and the slope = −2 − 2H of the lines define the Hurst expo-
nent H (or fractal dimension Df = 3 − H).

3 � Contact Area and the Average Interfacial 
Separation

Consider the contact between two elastic solids with nomi-
nally flat surfaces. Because of surface roughness the contact 
will not be complete. As long as the relative contact area 
A∕A0 (where A0 is the nominal contact area) is below ≈ 0.3 
the contact area increases approximately linearly with the 
applied squeezing pressure p. Theory and numerical simula-
tions shows that [7, 15–17]

where � is the rms slope of the combined roughness profile 
and where the effective elastic modulus E∗ is determined by 
the Young’s elastic modulus and the Poisson ratio of the two 
solids via 1∕E∗ = (1 − �2

1
)∕E1 + (1 − �2

2
)∕E2.

In many applications the (relative) area of real contact 
is very small and the surfaces are separated by an air film 
in most places. The resulting gap field (surface separation) 
between two solids is very important for many applications, 
but for the contact resistance the average gap height (average 
surface separation) ū is enough. When the applied pressure 
p is such that the relative contact area is much less than 1 
(but not so small that finite size effects become important), 
the average separation ū is related to the squeezing pressure 
p as [8]

where u0 ≈ hrms∕2 and � both are determined by the surface 
roughness power spectrum C(�) . The theory also predicts 

(1)
A

A0

≈
2p

�E∗
,

(2)p ≈ 𝛽E∗e−ū∕u0
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Fig. 1   The surface roughness power spectrum of a granite surface 
produced by fracture (red) and for the surface of a die casted alu-
minum structure (blue). The roll-off wavenumber qr is indicated 
(Color figure online)



Tribology Letters (2022) 70: 88	

1 3

Page 3 of 9  88

the probability distribution of stress and surface separation 
[10, 11].

4 � Interfacial Contact Stiffness

Because of surface roughness an interface of solid con-
tact is usually less stiff than the bulk material, and is often 
represented as a layer of (nonlinear) elastic springs. If two 
solids with a nominally flat surfaces are squeezed together 
with the pressure p the normal interfacial contact stiffness 
is defined as K = −dp∕dū . If the pressure is not too high (as 
to approach complete contact) or too low (where finite-size 
effects become important) then for elastic contact (2) holds 
and

In Fig. 2 we show the calculated result for the contact stiff-
ness over a wide pressure range where both finite-size 
effects and approach of complete contact occur [18, 20]. 
For pressures above the finite-size regime the stiffness is 
well approximated by K = (p∕u0)exp(cp∕E

∗) . In the finite 
size region K ∼ p1∕(1+H) (see Refs. [18, 19]). The onset of 
this low-pressure scaling regime moves to lower pressure 
when the roll-off region in the power spectrum increases. In 
the finite-size regime the solids makes contact only at the 
highest macro asperity [18].

(3)K ≈
1

u0
𝛽E∗e−ū∕u0 =

p

u0

The contact stiffness theory has been tested experimen-
tally for both for elastically soft materials like rubber [21, 
22], and for elastically stiff materials [23, 24]. In both cases 
a linear dependency of the stiffness on the squeezing pres-
sure was found with K ≈ p∕u0 with u0 ≈ hrms∕2 . For met-
als plastic flow is expected at the asperity level, which will 
effectively increases the stiffness. For elastically stiff solids 
and for small applied squeezing forces, finite size effects are 
important and the contact resistance will depend nonlinearly 
on the applied force as observed in some cases.

Note that hrms and hence the contact stiffness are deter-
mined mainly by the longest wavelength roughness, and in 
most cases it is not necessary to study the surface topog-
raphy h(x, y) at high magnification in order to obtain the 
contact stiffness.

5 � Relation Between Contact Stiffness 
and Contact Resistance

If an electric potential is applied between two metallic solids 
in contact an electric current will flow from one solid to 
the other via the asperity contact regions (see Fig. 3). The 
interfacial resistance to the current flow is denoted as the 
electric contact resistance. The electric contact conductance 
�el is defined by

(4)Jz = �el(�1 − �2),
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Fig. 2   Red line: The calculated perpendicular interfacial contact stiff-
ness K as a function of the squeezing pressure p (ln-ln scale). For an 
elastic solid with E∗ = E∕(1 − �2) = 100 GPa and with a randomly 
rough (self affine fractal) surface with the rms-roughness amplitude 
1 μm and Hurst exponent H = 0.8 . For pressures above the finite-size 
regime the stiffness is well approximated by K ≈ (p∕u0)exp(cp∕E

∗) 
(green line) and in the finite-size regime K ∼ p1∕(1+H) (see Refs. 
[18, 19]). The parameter u0 ≈ hrms∕2 and c is given approximately 
as c ≈ (4.4 − 33H + 50H2)∕(hrmsqr ) for 0.5 < H < 1 (Color figure 
online)
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Fig. 3   The electric current at the interface is highly non-uniform but 
becomes nearly uniform a short distance from the interface where the 
electric potential is �1 in solid 1 and �2 in solid 2
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where Jz is the electric current and �1 and �2 are the electric 
potential in the two solids close to the interface, at such 
distance from the interface that the electric potential is 
nearly uniform in the plane parallel to the interface. In a 
similar way one can define a thermal contact conductance 
by Jz = �th(T1 − T2) , where Jz is the thermal current, and 
T1 − T2 the temperature change over the interface. The con-
tact resistance R = 1∕(�A0) (here we assume � = �el or �th 
are constant in the nominal contact area A0).

It has been shown by Barber [5] (see also Refs. [20, 25]) 
that the constriction contribution to the heat and electric 
contact resistance are closely related to the mechanical 
contact stiffness K. The fundamental reason for this is 
the similarities between the equations determining elastic 
deformations and the temperature in thermal contact, and 
the electric potential in electric contacts. For the latter two 
phenomena conservation of heat and of electric charge 
gives ∇ ⋅ � = 0 where � = −�th∇T  for the heat current and 
� = −�el∇� for the electric current. This gives ∇2T = 0 
and ∇2� = 0 , respectively. These equations are similar to 
the continuum mechanics equation determining elastic 
deformations in the static limit. In particular, Boussinesq 
has shown that if an elastic halfspace is loaded by a normal 
stress, the solution involves a function � which satisfies 
∇2� = 0 . Using this one can show that [5]

where 1∕�∗
el
= 1∕�

(0)

el
+ 1∕�

(1)

el
 where �(0)

el
 and �(1)

el
 are the 

electric conductivity of solid 1 and 2, respectively. The 
effective thermal conductivity �∗

th
 is defined in a similar way.

Since the mechanical contact stiffness is mainly deter-
mined by the long wavelength roughness, it follows that 
the same is true for the constriction contribution to the 
electric and the thermal contact resistance. Thus infor-
mation about the short wavelength roughness is in most 
cases not needed when determining the electrical and 
thermal contact resistance. Since the area of real contact 
is determined mainly by the short wavelength roughness, 
and since the (elastic) contact area would vanish if rough-
ness down to arbitrary short length scale would exist, one 
could theoretically imagine a case where the electric con-
tact resistance is finite even when the area of real con-
tact would vanish. In this case an infinite electric current 
density would flow through a zero contact area in such a 
way that ∞× 0 = I  where the electric current I = U∕R . 
In reality this is of course is impossible since there is a 

(5)�el = 2�∗
el

K

E∗

(6)�th = 2�∗
th

K

E∗
,

short distance cut-off which must be larger than an atomic 
dimension. Furthermore, as the contact area decreases the 
contact pressure increases (given a fixed normal load) and 
finally plastic deformation of the solids will occur and the 
contact area saturates.

In many cases plastic deformation does not occur at the 
(long) length scales which determines the contact stiffness 
and the constriction resistance. In these cases the constriction 
resistance is accurately obtained assuming only elastic defor-
mations, even if plastic deformations occur at short length 
scales.

The results presented above assume that the contact resist-
ance is entirely due to the current constrictions involving 
homogeneous materials and no contamination or oxide films. 
Thin oxide and contamination films could affect the electric 
contact resistance hugely, unless the local contact pressure is 
big enough to break-up these films [3]. If there are no strong 
bonds formed at the interface between the solids, contamina-
tion and oxide films could also strongly increase the contact 
heat resistance because of weak interfacial coupling, even if 
the thermal conductivity of such films are high. In addition, 
the non-contact area could be very important for heat transfer 
via heat diffusion in the surrounding gas, or via blackbody 
heat radiation, which can be strongly enhanced at short surface 
separation because of the near field (evanescent) part of the 
electromagnetic field [25–27].

6 � Electric Contact Resistance

If we assume that the pressure p = p0 is constant in the nomi-
nal contact area, and if we assume K = p0∕u0 and denote the 
potential drop over the interface by U = �1 − �2 from (4) and 
(5) we get

The electric current

Since p0A0 = F is the normal force, we obtain the constric-
tion resistance

where the resistivity �∗ = 1∕�∗
el
 . If the material on both sides 

of the junction are identical materials then �∗
el
= �el∕2 and 

�∗ = 2∕�el = 2� and E∗ = E∕[2(1 − �2)].

(7)Jz = 2�∗
el

p0

u0E
∗
U

(8)I = JzA0 = 2�∗
el

p0A0

u0E
∗
U

(9)R =
U

I
=

E∗

2F
�∗u0
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7 � Classical Theory for the Contact 
Resistance

The classical theory of the constriction resistance is pre-
sented in the book of Holm [3]. The most basic result is the 
resistance of a circular constriction which can be derived in 
different ways which we first briefly review.

Consider a circular contact region between two conduct-
ing semi-infinite solids. Figure 4a shows the electric current 
flow through the contact region. We assume first that there 
is no isolating (oxide or contamination) film at the inter-
face between the two solids. For this case the resistance is 
entirely due to the constriction and there are several ways to 
estimate this resistance: 

(1)	 There are only two quantities in the problem, namely 
the electric resistivity � and the diameter of the circular 
constriction a, and the only way to construct a vari-
able with the dimension of the resistance is �∕a so we 
expect from dimensional arguments 

 where � is a number of order unity.
(2)	 Most of the energy dissipation occur in a volume ele-

ment of linear size a at the junction, where A ∼ a2 is 
the cross section area of the junction (see Fig. 4b). The 
electric resistance of a cylinder of width a and height 
∼ a is ∼ �a∕A ∼ �∕a where � is the resistivity of the 
bulk material. Thus we expect again a contact resist-
ance of the form (10).

(3)	 If one assumes that the electric current flow radially 
(and angular uniform) away from the constriction then 
the contact resistance of a thin shell between r and 
r + dr is �dr∕(2�r2) and the total contact resistance 

 which is again on the form (10).
(4)	 The exact solution [28] is obtained by solving the 

Laplace equation for the electric potential, ∇2� = 0 
with appropriate boundary conditions. If a is the diam-
eter of the circular contact region then this approach 
gives (10) with � = 1.

We note that the result (10) (with � = 1 ) is valid for a circular 
contact between two semi-infinite solids with flat surfaces. 
Hence it does not take into account the geometrical shape 
of the asperities from which the contact region is derived. In 
the Barber approach this shape-factor is in principle included 
(in the small slope approximation).

(10)R = �
�

a

(11)R ≈ 2

∞

∫
a

�dr

2�r2
=

1

�

�

a
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Fig. 4   a The electric current at one asperity contact region. b Most 
of the energy dissipation occur in a volume element of linear size a 
at the junction, giving the resistence ∼ �a∕a2 = �∕a where � is the 
resistivity of the bulk material. c If a thin layer (thickness d) of mate-
rial with different resistivity �f occur at the interface there will be an 
additional contribution to the resistance given by �fd∕A ∼ �fd∕a

2

macro asperity
contact regions

D

Fig. 5   The contact morphology when two nominally flat elastic solids 
are squeezed into contact consist in general (unless the contact pres-
sure is very high) of well separated macroasperity contact regions. 
Each such region consist of closely spaced contact spots (with the 
average diameter ā ) which are denoted microasperity contact regions. 
From the point of view of the contact constriction contribution to the 
resistance, the macroasperity contact regions can be considered as 
compact islands with a radius D indicated by the dashed circles
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Figure 5 shows the contact morphology when two nomi-
nally flat elastic solids, with surface roughness power spec-
tra with roll-off regions, are squeezed into contact. In gen-
eral, the contact consist (unless the contact pressure is very 
high) of many well separated islands (macroasperity contact 
regions), each consisting of many closely spaced contact 
spots.

Consider now a macroasperity contact region (diameter 
D) and assume that N microasperity contact regions (with 
the average diameter ā ) are uniformly distributed within it 
(see Fig. 5). In that case the contact resistance of the mac-
roasperity contact region is approximately [2–4]

Since in general the microasperity contact regions are 
densely distributed within the macroasperity contact region 
it is easy to see that the contact resistance is determined 
mainly by the term �∕D . This result is consistent with the 
fact that the constriction resistance is determined by the long 
wavelength roughness and hence the internal structure of 
the macroasperity contact regions (which is determined by 
shorter wavelength roughness) is unimportant.

Consider now a system with N′ macroasperity contact 
regions. If the applied load is not too high then the distance 
between the macroasperity contact regions will be large and 
the interaction between them can be neglected. In that case 
the total resistance will be a factor of 1∕N� smaller than given 
by (12):

Since in a large pressure range, where the contact area is 
proportional to the contact pressure, N′ is proportional to 
the applied normal force F and hence R is proportional to 
1/F as also found in the more accurate approached based on 
the Barber theory for the contact resistance.

8 � Comparing the Expressions 
for the Constriction Resistance

Let us compare (9) with (13):

The size and the concentration of the macroasperity contact 
regions can be estimated using the Greenwood-Williamson 
(GW) theory [29] if we assume that the pressure is so small 
that the contact regions are separated enough that the elastic 
interaction between the contact regions can be neglected. In 
fact, the contact stiffness is only (approximately) correctly 

(12)R ≈
𝜌

Nā
+

𝜌

D

(13)R ≈
�

N�D

R ≈
E∗

2F
�∗u0, R ≈

�∗

2N�D
.

described by the GW theory if the contact regions are sepa-
rated by distances in the order of or larger than the roll-off 
wavelength in the power spectrum [30].

Assuming the height probability distr ibution 
P(z) ∼ exp(−�z∕hrms) , where � is a number of order unity 
(typically � ≈ 2 , see [31]), the GW theory predict that

If we choose � = (2∕3)(2�)1∕2 ≈ 1.7 we get from (13) 
and (14) the result (9) obtained using the rigorous Barber 
approach. We do note, however, if one assumes a Gaussian 
distribution of asperity heights, as expected for a randomly 
rough surface, then the GW theory does not predict a strict 
linear relation between F and N′.

9 � Discussion

Assume that there is a thin film, e.g., an oxide film or a con-
tamination film, at the interface between the two solids. We 
can estimate the contribution from this film to the contact 
resistance using the picture shown in Fig. 4c. Thus, if a thin 
layer (thickness d) of material with different resistivity �f 
occur at the interface there will be an additional contribution 
to the resistance given by

and the total resistance is the sum of (15) and the constric-
tion resistance (9):

We can use this expression to estimate when the interfacial 
film will dominate the resistance. The interfacial film will 
give the same contribution as the constrictions when

In most cases of interest plastic deformation determine the 
area of real contact so that �PA = F and we get

In a typical case u0 ≈ 1 μm , d ≈ 1 nm , E∗ ≈ 100 GPa and 
�P ≈ 1 GPa giving

Now most metal oxides have much larger resistivity than 
predicted by this equation. For example, aluminum oxide 

(14)F =
2(2�)1∕2

3�
E∗N�Dhrms

(15)Rf =
�fd

A

Rtot ≈
E∗

2F
�∗u0 +

�fd

A

E∗

2F
�∗u0 =

�fd

A

�f =
E∗

�P

u0

d
�

�f ≈ 105�.
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has �f ≈ 1012 Ωm (see Ref. [32]) compared to the resistiv-
ity of aluminum which is � ≈ 3 × 10−8 Ωm . However, if the 
aluminum oxide film is thin enough electrons can tunnel 
through it which could give a smaller effective film resist-
ance. However, estimation of this for typical thickness of 
aluminum oxide films ( d ≈ 3 nm ) still gives a resistivity (of 
order �f ≈ 106 Ωm ) much larger than 105� (see Ref. [33]). 
We conclude that unless the oxide film is very imperfect 
(with could allow sequential or resonant tunneling, or the 
formation of metallic channels [33]), the oxide film must be 
broken in order for the constriction resistance to dominate 
the contact resistance.

Up to now we have assumed that the power spectrum has 
a roll-off and that the nominal contact area is so large (linear 
size L) that �∕L is a wavenumber in the roll-off region. In 
many electrical contacts problem the nominal contact region 
is very small in order to get high enough contact pressure to 
break (or penetrate) the oxide and contamination films. In 
these cases a single macroscopic sized contact region may 
form. In particular if one surface has a spherical curvature 
(radius of curvature R) the macroscopic contact pressure 
would be Hertz-like assuming no plastic deformation on the 
macroscopic scale.

If the Hertz theory can be applied the diameter D of the 
contact region depends on the normal force as D ∼ F1∕3 and 
in this limit the contact resistance R ∼ F−1∕3 . If instead the 
contact area is fully plastically deformed the contact diam-
eter is determined by 4F∕(�D2) = �P , where �P is the pen-
etration hardness, and the contact resistance R ∼ F−1∕2.

To avoid or reduce the influence of oxide and contamina-
tion films the contacting surfaces are often covered by thin 
gold films. Gold is the only metal which does not react with 
atmospheric gases and no oxide (or sulfide) film form on 
the surface. In addition, gold is plastically soft (penetration 
hardness �P ≈ 0.2 GPa ) which result in a large contact area 
even at relative low contact pressures.

In some application only one of the contacting surfaces 
is covered by a gold film. This can result in problems as 
illustrated in Fig. 6 for the contact between a gold covered 
steel surface and an aluminum surface with an oxide film. 
Since the penetration hardness of gold is rather low the 
contact stress may not be high enough to break the oxide 
film resulting in a huge contact resistance (which may be 
determined by electron tunneling through the oxide film). 
To break the oxide film I suggest to include hard metallic 
particles in the gold film. This would result in very large 
local contact stresses which could break the oxide film and 
allow gold to be squeezed in contact with the aluminum. If 
the electric current is of the DC type and in the right direc-
tion electromigration could fill up the cracks with gold as 
indicated in Fig. 6

In this paper, we have assumed that the electron trans-
fer in the junctions are diffusive i.e. the electron mean 
free path is smaller than the diameter (and length) of the 
constructions. For most practical systems this is likely to 
be the case owing to oxide fragments and contamination 
molecules embedded in the junction material at the con-
tacting interface. This is likely to be the case even for 
gold contacts in the normal atmosphere. However, for very 
clean metallic surfaces, in particular gold in vacuum con-
dition, very thin conducting junctions may form where 
the electron transfer is ballistic rather than diffusive. In 
this case the resistance of the individual junctions may 
be quantized in the units of h∕(2e2) ≈ 1.3 × 104 Ω (where 
h is Planck constant and e the electron charge) [34, 35]. 
However, even in these cases for surfaces with roughness 
on many length scales and high enough applied normal 
force (as is relevant for most electronic applications) the 
contact resistance will be determined by the macroscopic 
contact stiffness and the long wavelength surface rough-
ness, and the exact origin of the microscopic electron 
transfer (which could be diffusive or ballistic) is irrelevant 
for contact resistance.

Finally I note that there are several important effects we 
have not discussed above. Thus, the contact resistance result 

aluminum

steel

Al-oxide
gold

hard particles
e.g. tungsten

(a)

(b)

Fig. 6   A gold covered steel surface squeezed against an aluminum 
surface with an oxide film. a The penetration hardness of gold is 
rather low (about 200MPa ) and may not be enough to break the 
oxide film resulting in a huge contact resistance. b By including hard 
metallic particles in the gold film very large local contact stresses 
may occur which could break the oxide film and allow gold to be 
squeezed in contact with the aluminum
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in energy dissipation and local temperature increase at the 
junctions [3, 36]. Because of the surface roughness the con-
tact will have capacitance, and electrostatic attraction will 
occur between the bodies. This electroadhesion depends on 
the probability distribution of surface separation [37, 38]. 
Associated with the conducting constrictions will also be 
an inductance [3]

10 � Summary and Conclusion

The nature of the electric contact between two contacting 
metallic bodies is a fundamental problem which has been 
studied for a long time. Almost all studies today are based on 
the classical constriction approach which is summarized in 
the book of Holm [3]. However, an alternative theory which 
is simpler and formally exact was developed by Barber [5]. 
In this theory the constriction resistance is shown to be pro-
portional to the mechanical contact stiffness which usually is 
determined by the most long wavelength roughness. In this 
paper I have shown how these two very different approaches 
are related. I have presented an analytical formula for the 
contact stiffness covering all contact pressures above the 
pressure range where finite-size effects are important. I have 
also suggested a way to improve the contact resistance when 
one of the contacting solids is covered by a gold film, by 
incorporating hard metallic (e.g. tungsten) particles in the 
gold film, which can break the oxide film on the counter 
surface.
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