001     910530
005     20250314084120.0
024 7 _ |a 10.1109/CLUSTER51413.2022.00066
|2 doi
024 7 _ |a 2128/32176
|2 Handle
024 7 _ |a WOS:000920273100051
|2 WOS
037 _ _ |a FZJ-2022-03912
041 _ _ |a English
100 1 _ |a Rojas, Elvis
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
111 2 _ |a 2022 IEEE International Conference on Cluster Computing
|g CLUSTER
|c Heidelberg
|d 2022-09-06 - 2022-09-09
|w Germany
245 _ _ |a Early Experiences of Noise-Sensitivity Performance Analysis of a Distributed Deep Learning Framework
260 _ _ |c 2022
|b IEEE
300 _ _ |a 516-522
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1666937882_5222
|2 PUB:(DE-HGF)
520 _ _ |a Deep Learning (DL) applications are used to solve complex problems efficiently. These applications require complex neural network models composed of millions of parameters and huge amounts of data for proper training. This is only possible by parallelizing the necessary computations by so-called distributed deep learning (DDL) frameworks over many GPUs distributed over multiple nodes of a HPC cluster. These frameworks mostly utilize the compute power of the GPUs and use only a small portion of the available compute power of the CPUs in the nodes for I/O and inter-process communication, leaving many CPU cores idle and unused. The more powerful the base CPU in the cluster nodes, the more compute resources are wasted. In this paper, we investigate how much of this unutilized compute resources could be used for executing other applications without lowering the performance of the DDL frameworks. In our experiments, we executed a noise-generation application, which generates a very-high memory, network or I/O load, in parallel with DDL frameworks, and use HPC profiling and tracing techniques to determine whether and how the generated noise is affecting the performance of the DDL frameworks. Early results indicate that it might be possible to utilize the idle cores for jobs of other users without affecting the performance of the DDL applications in a negative way.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
536 _ _ |a ExtraNoise – Leistungsanalyse von HPC-Anwendungen in verrauschten Umgebungen (449683531)
|0 G:(GEPRIS)449683531
|c 449683531
|x 1
536 _ _ |0 G:(DE-Juel-1)ATMLPP
|a ATMLPP - ATML Parallel Performance (ATMLPP)
|c ATMLPP
|x 2
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Knobloch, Michael
|0 P:(DE-Juel1)132163
|b 1
|u fzj
700 1 _ |a Daoud, Nour
|0 P:(DE-Juel1)188664
|b 2
|u fzj
700 1 _ |a Meneses, Esteban
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Mohr, Bernd
|0 P:(DE-Juel1)132199
|b 4
|u fzj
773 _ _ |a 10.1109/CLUSTER51413.2022.00066
856 4 _ |u https://juser.fz-juelich.de/record/910530/files/HPCEuropeLatAm2022.pdf
|y OpenAccess
|z StatID:(DE-HGF)0510
909 C O |o oai:juser.fz-juelich.de:910530
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Costa Rica Institute of Technology
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a National University of Costa Rica
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132163
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)188664
910 1 _ |a Costa Rica Institute of Technology
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Costa Rica National High Technology Center
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)132199
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21