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Abstract—Deep Learning (DL) applications are used to solve
complex problems efficiently. These applications require complex
neural network models composed of millions of parameters and
huge amounts of data for proper training. This is only possible by
parallelizing the necessary computations by so-called distributed
deep learning (DDL) frameworks over many GPUs distributed
over multiple nodes of a HPC cluster. These frameworks mostly
utilize the compute power of the GPUs and use only a small
portion of the available compute power of the CPUs in the
nodes for I/O and inter-process communication, leaving many
CPU cores idle and unused. The more powerful the base CPU
in the cluster nodes, the more compute resources are wasted. In
this paper, we investigate how much of this unutilized compute
resources could be used for executing other applications without
lowering the performance of the DDL frameworks. In our
experiments, we executed a noise-generation application, which
generates a very-high memory, network or I/O load, in parallel
with DDL frameworks, and use HPC profiling and tracing
techniques to determine whether and how the generated noise is
affecting the performance of the DDL frameworks. Early results
indicate that it might be possible to utilize the idle cores for jobs
of other users without affecting the performance of the DDL
applications in a negative way.

Index Terms—Distributed Deep Learning, Performance Anal-
ysis, Noisy Environments

I. INTRODUCTION

Today, Deep Learning (DL) applications are used to solve
many complex problems efficiently. These applications require
complex neural network models composed of millions of
parameters and huge amounts of data for proper training. To
be able to perform the training in a reasonable time, so-called
distributed deep learning (DDL) frameworks are used. They
parallelize the training by distributing necessary computations
across available GPUs of multiple nodes of HPC cluster. These
frameworks mostly utilize the compute power of the GPUs and
use only a small portion of the available compute power of the
CPUs in the nodes for I/O and inter-process communication,
leaving many CPU cores idle and unused. This problem
increases with modern powerful many-core CPUs which have
up to 128 cores and nodes with multiple CPU sockets. In our
experiments with PyTorch/Horovod, we determined that each
MPI task, which controlled one GPU, used up to eight threads.
So on a high-end HPC system node with four GPUs it would
leave half (64-cores/node) or three-quarter (128-cores/node) of
the cores unused.

In this paper, we investigate how much of this unutilized
compute resources could be used for executing other applica-

tions (of potentially other users) without lowering the perfor-
mance of the DDL frameworks. As most of the compute load
of the DDL is utilizing the GPUs attached to the node, running
”conventional” MPI/OpenMP HPC applications which only
use the CPU cores left idle, is possible. In order to get reliable
and repeatable results we used a noise-generation application,
which generates a very-high memory, network or I/O load,
instead of an example HPC application, and executed it in
parallel with DDL frameworks. We used the well-established
HPC profiling and tracing tools Score-P, Cube, and Vampir to
determine whether and how the generated noise is affecting
the performance of the DDL frameworks.

Early results indicate that it might be possible to utilize
the idle cores for jobs of other users without affecting the
performance of the DDL applications in a negative way.
However, more extensive experiments need to be carried out
before being able to make this claim.

The contributions of this paper are the following:

¢ We show how traditional HPC performance instrumenta-
tion and measurement tools can be used to analyze DDL
frameworks.

o On the basis of a noise-sensitivity performance analysis,
we investigated whether utilizing CPU cores left idle by
DDL frameworks by executing other HPC applications
is possible. First results show no negative performance
impact on the execution of the DDL framework Horovod,
required proper mapping of task/threads to CPU cores is
provided.

After providing some background information on DL and
DDL frameworks, HPC performance analysis, and noise gen-
eration in Section we describe our experimental method-
ology in more detail in Section Section [TV] describes the
results of our preliminary experiments. Concluding remarks
and future work are presented in Section [V]

II. BACKGROUND

In this section, we provide some background on (distributed)
deep learning, HPC performance analysis, and noise genera-
tion frameworks and tools we use in our experiments.

A. Deep Learning

1) Deep neural networks and frameworks: DL applications
base their operation on artificial neural networks (ANN).
ANNs can be developed to solve specific problems taking



advantage of their ability to learn without requiring a redesign
of their structure. In the context of DL, an NN becomes a
deep NN when there are at least 3 interconnected layers of
ANNSs, namely an input layer, an output layer, and at least
one layer in between, known as the hidden layer [1f]. There is
a wide variety of deep NN structures with different amounts
of parameters, features and possible applications. One of the
most common types of NNs are known as Convolutional NNs
(CNNSs) [2]], which can also vary in structure. In this study we
use ResNet, a type of CNN called residual in which shortcuts
are used to move between layers [3].

DL frameworks provide support for the creation, implemen-
tation and execution of CNNs. They offer a high-level interface
to ease the usage of NNs and hide the low-level details. In
addition, they contain proprietary and third-party specialized
libraries that allow the use of acceleration hardware (GPUs,
TPUs) and the implementation of optimized parallelization
mechanisms to speed up the execution of DL training. In this
paper, the DL framework PyTorch [4] was utilized because it
provides all the necessary elements for our experiments.

2) Distributed Deep Learning: Today, DL applications are
used to solve complex problems efficiently. These applica-
tions require complex NN models composed of millions of
parameters and huge amounts of data for proper training. This
implies long training times that in the past with the limitations
of hardware and software were impossible to perform. HPC
systems are designed for the parallel execution of applications.
These systems have evolved incorporating new accelerator
components (GPUs) allowing to speed up DL applications
by implementing parallelism in DL training. This leads to
the concept of distributed training (DT) or distributed DL
in general. In this study, the DL framework PyTorch was
used, which allows implementing different mechanisms to
convert sequential DL training into distributed training. This
enables the execution of training with multiple GPUs on one
or multiple nodes.

Horovod (HVD) is a library for DT that bases its operation
on the data parallel approach. In this approach the CNN
model is copied to each of the GPUs requested for train-
ing [5]]. Figure (1| shows the overall structure of the operation
of HVD. First, there is an initialization (hvd.init), then it
performs a broadcast that ensures the correct initialization
and synchronization of all processes. In addition, a distributed
optimizer is implemented to delegate the gradient computation
to the original optimizer and average the gradients. HVD bases
its operation on the ring-allreduce algorithm to synchronize
the gradients [[6]. With this algorithm, 2(N-1) communication
exchanges are generated between processes for sending and
receiving the process data buffer chunks [7].

B. Performance Analysis

Many HPC performance analysis tools exist, each each with
its own strengths and weaknesses. A good overview about
available vendor-independent tools is provided by Mohr [S].
One example of using HPC tools for the analysis of DDL
applications is provided in [9]. In our experiments, we used
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the instrumentation and measurement framework Score-P, the
profile browser CUBE, and the trace visualizer VAMPIR.

1) Score-P: Score-P [10] is a highly scalable tool for per-
formance analysis of HPC applications through profiling and
event tracing. It provides an instrumentation framework that
make it possible to automatically insert measurements probes
into HPC applications written in Fortran or C/C++. User func-
tions are instrumented by using compiler options or plugins.
Manual instrumentation allows to mark arbitrary phases in the
codes, including loops. Additional Score-P measurement run-
time libraries collect data related to performance (execution
times, visits, communication metrics, hardware counters, etc)
during application executions and support a wide variety of
instrumentation and measurement options for typical HPC
programming paradigms (MPI, SHMEM, OpenMP, Pthreads,
CUDA, OpenACC, among others). Profile results are written
in the standard CUBE4 format and can be analyzed with
Cube [11]]. Traces are written in the standard OTF2 format [|12]
and can be investigated with the help of the trace visualizer
Vampir [[13].

2) Python Bindings for Score-P: Score-P is supporting
instrumentation and measurement of applications written in
C/C++ and Fortran. However, the DL framework used in
this study for experimentation is PyTorch, whose high-level
implementation is implemented in Python. To facilitate the
instrumentation and measurement of Python components, we
utilize a publicly-available extension to Score-P [14] for
instrumenting Python code for profiling and tracing.

3) Visualization tools: Cube [11]] provides the data format
for the profile performance analysis reports and graphical user
interface (GUI) for report examination. The Cube data model
describes the performance behavior of an application in a
three-dimensional space consisting of performance metric, call
tree and system location. The GUI visualizes this in three
coupled tree-browsers. An example screenshot of the Cube
GUI is shown in Figure

Vampir [13]] is a trace visualization tool with which par-
allel program executions can be analyzed through multiple
graphical representations like state diagrams, activity charts,
time-line displays, and statistics (see Figure [5). In addition, it
implements a powerful zooming feature that allows executions
to be analyzed at any level of detail.



C. Noise Generation

1) NOIGENA: The noise-generator NOIGENA developed
as part of the ExtraNoise project [[15]] allows to produce a
consistent and repeatable noise effect for configurable amount
of time on node level (intra-node) caused by shared resources
contention (memory, network and I0). For generating a spe-
cific noise type, it integrates three open-source benchmarks:

« Stream for memory noise. STREAME] is a simple syn-
thetic benchmark program that measures sustainable
memory bandwidth (in MB/s) and the corresponding
computation rate for simple vector kernels. It was de-
veloped by John D. McCalpin, Ph.D.

o FZ]JLinkTest for network noise . The Linktesﬂ program
is a parallel ping-pong test between all possible MPI
connections of a machine. It is developed and maintained
by Jilich Supercomputing Centre.

« IOR for IO noise . IORE] is a parallel IO benchmark that
can be used to test the performance of parallel storage
systems using various interfaces and access patterns. It is
developed by Lawrence Livermore National Laboratory.

The noise-generation application can be configured based
on a YAML file. It has two parts: The first part is allows
configuring the memory, network and IO benchmarks. The
second part specifies the exact noise patterns, which should
be produced by the generator. A noise pattern either describes
the specific sequence of the noise modes and their desired run
time, or the desired run time of random noise with a specified
distribution between the different noise types.

III. METHODOLOGY
A. System configuration

The experiments carried out used the JUWELS supercom-
puting system located at the Jiilich Supercomputing Centre
(JSC). This system is divided into two hardware partitions
called Cluster and Booster. For this paper the Booster hardware
partition was used. This partition is made up of 936 nodes
with a performance of 73 petaFLOPS. Each node has two
24-core AMD EPYC Rome CPUs and four NVIDIA A100
GPUs. Table [l shows the software tools and versions used in
the experiments.

B. System architecture

Figure 2] shows the internal structure of a JUWELS Booster
node. Experiments were performed on this architecture, so it is
relevant to understand how the components are interconnected
and interact to perform a more efficient assignment of tasks.

The important noteworthy aspects are:

e The two 24-core AMD EPYC CPU (shown as red blocks
in the figure) each are divided up into four NUMA
domains with six cores each. Each NUMA domain has
separate network channels. The configuration originates

Uhttps://www.cs.virginia.edu/stream/

Zhttps://www.fz-juelich.de/en/ias/jsc/services/user-support/
jsc-software-tools/linktest

Jhttps://sourceforge.net/projects/ior-sio/files/TOR %20latest/IOR-2.10.3/

TABLE I

SOFTWARE TOOLS AND VERSIONS
Software tool Name Version
Profile and trace tool Score-P 7.1
Noise generator NOIGENA 0.9
Visualization tools S:.rl:;)ir 4115040
Deep learning framework PyTorch 1.11
DT mechanism Horovod 0.24.3
Network model ResNet 50
Dataset CIFAR 100

from the production of the CPU chip, which is not
produced as one monolithic die, but rather consists of
four individual dies.

o The GPUs are not connected to a CPU (socket) in general
but to specific NUMA domains in unexpected ways
(namely GPUO to NUMA domain 3, GPUl to NUMA
domain 1, GPU2 to NUMA domain 7, and GPU3 to
NUMA domain 5)

o Each of the sockets (composed of 4 NUMA domains) is
directly connected to a memory controller.

All of this has to be taking into account when mapping CPU

tasks and threads to specific cores.
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Fig. 2. Juwels-Booster node architectur{]

C. Design of Experiments

The experiments carried out consist of planned executions of
DDL training, which are instrumented for subsequent perfor-
mance analysis. Additionally, these experiments are executed
together with a noise generator software that is used to sim-
ulate special conditions that can affect performance (network,
memory or I/O noise) in a consistent way. The most important
elements that are part of the experiments are detailed below:
Deep Learning: The experiments were executed using the
DL framework PyTorch together with Horovod to perform
the distributed training. ResNet50 is used as CNN and CI-
FARI100 [16] as dataset. Each one of the trainings was exe-
cuted for 5 epochs, which allows obtaining adequate execution
times to be analyzed. It was necessary to instrument the
PyTorch code to allow Score-P to collect the profiling and
tracing information during the execution of the training runs.

4https://apps.fz-juelich.de/jsc/hps/juwels/booster-overview.html
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To keep measurement overhead minimal, we didn’t instrument
the whole python code but used manual and selective instru-
mentation [[17] to get detailed information on the relevant parts
of the application.

Noise generator: A noise generator software called
NOIGENA is used. For this initial study, only memory noise
was used, as it generates noise with the highest impact.
Hardware resource planning: Resource allocation is done
based on the architecture shown in Figure 2] The PyTorch-
Horovod application makes use of all four GPUs of the node.
In addition, 6 CPU cores per MPI task (4 x 6 = 24 cores) are
used for Horovod initialization and synchronization tasks. The
remaining 24 cores are assigned to the noise generator. The
allocation of resources was done manually and two scenarios
were implemented:

o Exclusive NUMA domains: In this scenario the cores
used by PyTorch/Horovod are assigned to the same
NUMA domains where the GPUs are connected. The
noise generator is mapped to the remaining NUMA
domains without GPU connections. For example, based
on Figure [2| the GPUs are connected to NUMA domains
1, 3, 5, and 7, so the cores used by the noise generator
are mapped to the cores of NUMA domains 0, 2, 6, and
4.

o Shared NUMA domains: In this scenario the cores used
by PyTorch/Horovod and the noise generator are evenly
spread over all NUMA domains, i.e. each application gets
assigned 3 of the 6 cores in each NUMA domain.

We manually assign/map the tasks and threads of the
DDL training and noise generation to specific CPU cores for
controlled and repeatable experiments using extra options to
the parallel execution command (srun) of the job scheduler
(slurm). Figure [3| shows the basic slurm job script template
we used.

#SBATCH —--nodes=1

#SBATCH —--gres=gpu:4
#SBATCH —-partition=booster
srun -n 4 —--exact —--cpu-bind=<specl> \
horovod-script &

srun -n 24 —--exact —--cpu-bind=<spec2> \
-—gpus=0 noigena &

wait

Fig. 3. Simplified Template slurm job script for simultaneous execution.

Each of the experiments carried out requires the simul-
taneous execution of the training and the noise generator
on distinct subsets of cores of the compute node (specified
via the ——-exact option and the <spec> parameter of
the —-cpu-bind option). By running the commands in
the background (via ”&” at the end of the command) and
then waiting for them, enables the asynchronous and thereby
simultaneous execution of the two commands. In addition, we
added a simple time synchronization at the beginning of the

TABLE II
PERFORMANCE OF DL TRAINING (EXECUTION TIME IN SECONDS) IN
SINGLE NODE SHARED AND EXCLUSIVE NUMA ENVIRONMENTS.

Exclusive NUMA D Shared NUMA D
Repetition No Noise With Noise No Noise With Noise
1 135.36 144.24 145.80 284.34
2 138.81 138.94 147.63 190.37
3 136.11 138.31 147.91 242.95
4 134.32 134.83 146.40 245.49
5 136.01 138.12 145.06 263.57
6 135.17 137.04 144.38 194.85
7 137.26 135.39 144.55 257.87
8 134.33 138.29 143.31 283.81
9 135.05 141.70 146.14 293.36
10 135.31 135.16 144.99 306.13
MIN 134.22 134.83 143.31 190.37
Average time 135.77 138.20 145.62 256.27
Standard Dev. 1.377 2.97 1.45 39.26
TABLE III

SUMMARY OF THE PERFORMANCE OF DL TRAINING (EXECUTION TIME IN
SECONDS) IN TWO NODE SHARED AND EXCLUSIVE NUMA

ENVIRONMENTS.
Exclusive NUMA Domain Shared NUMA Domain
Repetition No Noise With Noise No Noise With Noise
MIN 81.13 77.92 83.44 213.86
Average time 81.81 81.05 85.58 231.21
Standard Dev. 1.54 1.45 1.36 23.50

Horovod main code and NOIGENA, to ensure that the jobs
submitted to run in parallel start executing at the same time.
Finally, the CPU-only command (here: the noise generator)
has to declare that it is not using any GPUs (via ——gpus=0),
otherwise it would be blocked until the GPUs are available,
and therefore would not run simultaneously.

Analysis and visualization: After the execution of the exper-
iments, an analysis of the profiling and tracing data generated
by Score-P is performed. For this analysis, the Cube and
Vampir applications are used.

1V. EXPERIMENTAL RESULTS
A. Noise-Sensitivity Analysis of DDL

For our main experiment, we used one node of the JSC
JUWELS Booster partition and we setup four different con-
figurations. We executed the PyTorch/Horovod DDL with
and without noise, i.e. executing NOIGENA in memory-noise
mode in parallel on the remaining cores or leaving these idle.
We repeated these experiments twice with different mappings
of the task and threads to CPU cores, namely with exclusive
or shared NUMA domains as explained in the last section.
Finally, for each configuration, we executed it 10 times to be
able to observe the usual run-time fluctuations on a heavily
loaded cluster like the JSC JUWELS production system.
Table [lIl summarizes the results from this experiments. The
values in the table are the total execution times of the Horovod
main code in seconds. From the table, we can make multiple
observations:

o As expected, the execution time of the shared NUMA

domains mapping is higher compared to the exclusive
one. In shared mode, half of the Horovod threads end up



on the NUMA domains with only indirect access to the
GPUs, slowing down execution.

o Also as expected, when executed with the shared NUMA
domains mapping, Horovod is very sensitive to NOISE,
as in that case PyTorch/Horovod and NOIGENA share
Level-2 and Level-3 caches. The impact can be quite
high: on average, the execution is 75% slower, and in
one case we measured a doubling of the execution time.

¢ However, when executed with the exclusive NUMA do-
mains mapping, where PyTorch/Horovod and NOIGENA
do not share any caches, there is no measurable difference
in execution time of the DDL training. Please note that
NOIGENA is representing the worst case here, as in
memory noise mode, it only stresses the memory. A typi-
cal HPC MPI/OpenMP application also has computation,
communication and I/O phases, so the “noise” impact on
the DDL training would be lower.

o We repeated the experiments on two nodes (using eight
GPUs). The results (see Table are confirming the
observations from the one node experiments.

o The results indicate that it might be possible to run
(non-GPU) HPC applications simultaneously with DDL
trainings on the same node utilizing cores left idle by the
DDL framework, iff the processes and threads of both
applications are carefully mapped to distinct subsets of
cores taking the node architecture into account.

B. Performance Analysis of DDL

In this section, we want to demonstrate that traditional HPC
tools can be used to analyze the performance of DDL frame-
works like PyTorch/Horovod. With the help of the Score-P
Python extension [17]], we instrumented the main Horovod
phases. With the core Score-P, the MPI communication and
synchronization, POSIX thread management, and CUDA ker-
nel executions were captured and measured.

Figure [4] shows the Cube result display of a profile measure-
ment of the fastest plain PyTorch/Horovod execution on one
node of JUWELS with exclusive NUMA domains mapping
(without noise). The left pane of Cube shows the available
(measured) metrics, the middle pane the program call tree,
and the right pane the system tree. In the left pane, we see
that 65.63% of the time, the programs spends computing,
21.29% in MPI functions, and 12.27% in total in CUDA
(General and Memory Management, Synchronization, Kernel
Launches). That means, that in this experiment, about a third
of the total execution time in used for managing inter-process
communication and GPU interaction. Besides measuring exe-
cution time, number of calls (visits), MPI statistics, Score-P
also measured some additional GPU metrics via CUPTTI (the
last seven metrics in the left pane).

When we select a metric in the left pane (like Com-
putation in the Figure), we can see how the value of
this metric is distributed over the source code. In the ex-
ample, we can see that 12.25% of the computation time
are spent in torch.autograd:backward, 4.87% in
torch.nn.modules.module:_call_impl, and 3.62%

in torch.optim.optimizer:wrapper. By selecting
these three call tree nodes, we can see that the execution time
is spread equally over the four MPI processes (in the right
pane). Besides the main Horovod phases, the middle pane also
list all kernel executions (not all shown in the picture).

When we repeat this analysis for the slowest plain Py-
Torch/Horovod execution on one node of JUWELS with
shared NUMA domains mapping (without noise), we find
that now only 62.70% is spent computing, while MPI over-
head increases by 4.73%. On the code side, the optimizer
step (torch.optim.optimizer:wrapper) takes here a
24.65% share of the computation time, compared to the 3.62%
in the other case. Further, more detailed analysis is required
to better understand the impact of noise to the DLL training.

Figure [5] shows the Vampir display of a trace measurement
of the same plain PyTorch/Horovod execution on one node of
JUWELS (without noise). In the left pane, a (small) portion
of the overall timeline of the execution is shown, at a point
where the the Master threads of each MPI task is executing
one instance of the torch.autograd:backward function
(shown as purple line).

The next 4 lines below them are showing kernel executions
on CUDA streams. It is clearly visible that only the first 2
streams are used, and that the GPUs are not fully utilized.
The line with the red bars shows each of the CPU threads
executing MPI communications, with MPI rank O, 1, and 3
mostly spending their time waiting in MPI_Allreduce for
MPI rank 2. Most of the remaining CPU threads are idle with
the exception of one CPU thread per rank which is launching
asynchronously CUDA kernels.

Besides showing the timeline, Vampir also provides various
displays for statistics. The values shown there depend on the
execution time window of the main time line, allowing the
user to calculate statistics for any portion of the execution. In
the Figure, the right side shows a Function Execution Time
Summary Statistic.

V. CONCLUDING REMARKS

In this paper, we presented results from early experiments,
which show that it is possible to use cores left idle by
DDL frameworks on HPC GPU clusters by executing other
applications in parallel without a negative impact on the
performance. A careful mapping of task and threads to distinct
subset of cores is required to allow a simultaneous execution
of both applications without interfering each other.

While these results are promising, more experiments are
needed for confirmation. In the future, we want to extend our
experiments by running them on a much larger scale (multi-
node), which would also allow us to use more realistic use
cases (with a much higher memory footprint) for the DDL
training. Multi-node cases will us also allow to experiment
with additional generated noise sources like network or I/O
noise. Finally, we also want to experiment with other DL/DDL
frameworks like TensorFlow/Horovod and PyTorch/DDP.
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pane shows available metrics, middle pane the program call tree, right pane the system tree. Numbers are shown in "Metric Percentage” mode.
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Fig. 5. Vampir display of plain PyTorch/Horovod execution on one node of JUWELS (without noise). On the left, a (small) portion of the overall timeline
of the execution is shown, on the right, the function execution time statistic.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the Gauss Centre for
Supercomputing e.V. (www.gauss-centre.eu) for funding this
project by providing computing time through the John von

Neumann Institute for Computing (NIC) on the GCS Super-
computer JUWELS at Jiilich Supercomputing Centre.

We also want to thank JSC support staff Max Holicki for
the very helpful explanations of the Juwels Booster compute
node structure and the details of task/thread mapping onto
CPU cores.


www.gauss-centre.eu

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

REFERENCES

A. Farkas, G. Kertsz, and R. Lovas, “Parallel and distributed training of
deep neural networks: A brief overview,” in 2020 IEEE 24th Interna-
tional Conference on Intelligent Engineering Systems (INES), 2020, pp.
165-170.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
p- 8490, may 2017. [Online]. Available: https://doi.org/10.1145/3065386
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770-778.

A. Paszke and et. al., PyTorch: An Imperative Style, High-Performance
Deep Learning Library. Red Hook, NY, USA: Curran Associates Inc.,
2019.

E. Rojas, F. Quirdés-Corella, T. Jones, and E. Meneses, “Large-
scale distributed deep learning: A study ofmechanisms andtrade-offs
withpytorch,” in High Performance Computing, 1. Gitler, C. J. Bar-
rios Herndndez, and E. Meneses, Eds. Cham: Springer International
Publishing, 2022, pp. 177-192.

A. Gibiansky. (2017, feb) Bringing hpc techniques to deep
learning.  [Online].  Available: https://andrew.gibiansky.com/blog/
machine-learning/baidu-allreduce/

A. Sergeev and M. Balso, “Horovod: fast and easy distributed deep
learning in tensorflow,” 02 2018.

B. Mohr, “Scalable parallel performance measurement and analysis
tools - state-of-the-art and future challenges,” Supercomputing Frontiers
and Innovations, vol. 1, no. 2, p. 108123, Sep. 2014. [Online].
Available: https://superfri.org/index.php/supertri/article/view/18

A. L. Veroneze Solérzano and L. Mello Schnorr, “Understanding dis-
tributed deep learning performance by correlating hpc and machine
learning measurements,” in High Performance Computing, A.-L. Var-
banescu, A. Bhatele, P. Luszczek, and B. Marc, Eds. Cham: Springer
International Publishing, 2022, pp. 275-292.

A. Kniipfer, C. Rossel, D. a. Mey, S. Biersdorff, K. Diethelm, D. Es-
chweiler, M. Geimer, M. Gerndt, D. Lorenz, A. Malony, W. E.
Nagel, Y. Oleynik, P. Philippen, P. Saviankou, D. Schmidl, S. Shende,

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

R. Tschiiter, M. Wagner, B. Wesarg, and F. Wolf, “Score-p: A joint per-
formance measurement run-time infrastructure for periscope, scalasca,
tau, and vampir,” in Tools for High Performance Computing 2011,
H. Brunst, M. S. Miiller, W. E. Nagel, and M. M. Resch, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 79-91.

P. Saviankou, M. Knobloch, A. Visser, and B. Mohr, “Cube v4: From
performance report explorer to performance analysis tool,” Procedia
Computer Science, vol. 51, pp. 1343-1352, Jun. 2015.

D. Eschweiler, M. Wagner, M. Geimer, A. Kniipfer, W. E. Nagel, and
F. Wolf, “Open trace format 2: The next generation of scalable trace
formats and support libraries,” in Applications, Tools and Techniques on
the Road to Exascale Computing. 10S Press, 2012, pp. 481-490.

A. Kniipfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler,
M. S. Miiller, and W. E. Nagel, “The vampir performance analysis tool-
set,” in Tools for High Performance Computing, M. Resch, R. Keller,
V. Himmler, B. Krammer, and A. Schulz, Eds.  Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 139-155.

A. Gocht, R. Schone, and J. Frenzel, “Advanced python performance
monitoring with score-p,” in Tools for High Performance Computing
2018/2019. Springer, 2021, pp. 261-270.

D. A. Nikitenko, F. Wolf, B. Mohr, T. Hoefler, K. S. Stefanov,
V. V. Voevodin, A. S. Antonov, and A. Calotoiu, “Influence of Noisy
Environments on Behavior of HPC Applications,” Lobachevskii journal
of mathematics, vol. 42, no. 7, pp. 1560 — 1570, 2021. [Online].
Available: https://juser.fz-juelich.de/record/8§94423

A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

A. Gocht-Zech, A. Grund, and R. Schone, “Controlling the runtime
overhead of python monitoring with selective instrumentation,”
in 2021 I[EEE/ACM International Workshop on Programming and
Performance Visualization Tools (ProTools). Los Alamitos, CA, USA:
IEEE Computer Society, nov 2021, pp. 17-25. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/ProTools54808.2021.00008
JSC, “JUWELS Cluster and Booster: Exascale Pathfinder with Modular
Supercomputing Architecture at JSC,” Journal of large-scale research
facilities, vol. 7, no. A138, 2021.


https://doi.org/10.1145/3065386
https://andrew.gibiansky.com/blog/machine-learning/baidu-allreduce/
https://andrew.gibiansky.com/blog/machine-learning/baidu-allreduce/
https://superfri.org/index.php/superfri/article/view/18
https://juser.fz-juelich.de/record/894423
https://doi.ieeecomputersociety.org/10.1109/ProTools54808.2021.00008

	Introduction
	Background
	Deep Learning
	Deep neural networks and frameworks
	Distributed Deep Learning

	Performance Analysis
	Score-P
	Python Bindings for Score-P
	Visualization tools

	Noise Generation
	NOIGENA


	Methodology
	System configuration
	System architecture
	Design of Experiments

	Experimental Results
	Noise-Sensitivity Analysis of DDL
	Performance Analysis of DDL

	Concluding Remarks
	References

