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Abstract

Derived from a biophysical model for the motion of a crawling cell, the evolution system

{ up = Au — V- (uVv),

B (*)
0=Av—kv+u,

is investigated in a finite domain 2 C R", n > 2, with £ > 0. Whereas a comprehensive literature
is available for cases in which (x) describes chemotaxis-driven population dynamics and hence is ac-
companied by homogeneous Neumann-type boundary conditions for both components, the presently
considered modeling context, besides yet requiring the flux d,u — ud,v to vanish on 02, inherently
involves homogeneous Dirichlet boundary conditions for the attractant v, which in the current setting
corresponds to the cell’s cytoskeleton being free of pressure at the boundary.This modification in the
boundary setting is shown to go along with a substantial change with respect to the potential to sup-
port the emergence of singular structures: It is, inter alia, revealed that in contexts of radial solutions
in balls there exist two critical mass levels, distinct from each other whenever £ > 0 or n > 3, that
separate ranges within which (4) all solutions are global in time and remain bounded, (ii) both global
bounded and exploding solutions exist, or (7i7) all nontrivial solutions blow up. While critical mass
phenomena distinguishing between regimes of type (i) and (iz) belong to the well-understood charac-
teristics of (x) when posed under classical no-flux boundary conditions in planar domains, the discovery
of a distinct secondary critical mass level related to the occurrence of (iii) seems to have no nearby
precedent.In the planar case with the domain being a disk, the analytical results are supplemented
with some numerical illustrations, and it is discussed how the findings can be interpreted biophysically
for the situation of a cell on a flat substrate.
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Résumé

Dérivé d’un modéle biophysique pour le mouvement d’une cellule rampante, le systéme d’évolution
ur = Au— V- (uVv), *)
*

0=Av — kv+u,

est étudiée dans un domaine fini  C R, n > 2, avec k£ > 0. Alors qu’une littérature compléte est
disponible pour les cas dans lesquels (x) décrit une dynamique de population pilotée par chimiotaxie et
donc s’accompagne de conditions aux limites homogénes de type Neumann pour les deux composantes,
le contexte de modélisation actuellement considéré, en plus d’exiger que le flux 0,u — ud,v disparaisse
sur 9L, implique intrinséquement des conditions aux limites homogénes de Dirichlet pour 'attractif v,
qui, dans le cas présent, correspond au cytosquelette de la cellule libre de toute pression a la frontiére.
Il est démontré que cette modification des conditions aux limites s’accompagne d’un changement sub-
stantiel en ce qui concerne le potentiel d’émergence de structures singuliéres: Il est, entre autres, révélé
que dans les contextes de solutions radiales dans les boules, il existe deuz niveaux de masse critique,
distincts 'un de 'autre quand & > 0 ou n > 3, qui séparent les plages dans lesquelles (i) toutes les
solutions sont globales en temps et restent bornées, (i) a la fois des solutions globales bornées et
explosives existent, ou (iii) toutes les solutions non triviales explosent. Alors que les phénoménes de
masse critique qui distinguent les régimes de type (i) et (i7) appartiennent aux caractéristiques bien
comprises des régimes de type (%), lorsqu’ils sont posés sous des conditions limites classiques sans
flux dans des domaines planaires, la découverte d’un niveau de masse critique secondaire distinct lié
a loccurrence de (i7i) semble n’avoir aucun précédent proche. Dans le cas planaire ou le domaine
est un disque, les résultats analytiques sont complétés par quelques illustrations numériques, et nous
discutons de la maniére dont les résultats peuvent étre interprétés biophysiquement dans le cas d’une
cellule sur un substrat plat.



1. Introduction

A Keller-Segel type model for crawling keratocytes. This study is concerned with the cross-
diffusion problem

up = Au— V- (uVv), x e, t>0,
0=Av—kv+u, re, t>0, (1)
u(z,0) = up(x), x € Q,

in a bounded domain Q C R™ n > 2. During the past decades, this system has received noticeable
interest when used as a parabolic-elliptic simplification of the celebrated Keller-Segel model to describe
collective behavior in microbial populations with movement chemotactically biased by a chemical signal,
and hence typically found accompanied by no-flux boundary conditions in the literature ([18], [15], [21]).

In contrast to this, the context to be considered in the present paper necessitates to supplement
by the requirements

g:j—ug:j:v:Q x € 092, (2)
on the boundary of the domain  C R"”, as intrinsically linked to the role which, quite independently
of the above, plays when derived from a biomechanical model for a single crawling keratocyte, or
rather a keratocyte fragment, that has been introduced in [2] for space dimension n = 2. These frag-
ments are similar to lamellipodia, i.e., very flat structures, and can in good approxomation be described
as two-dimensional entities. The computational model presented in [2] was reduced and analyzed in
[4], and similar models in one space dimension have been investigated in, e.g., [33]. From the physical
model in [2], a reduced free boundary problem has been derived in [4] by combining bulk and shear
components of the stress in the actin gel in a phenomenological way, allowing for the stress tensor to
be represented as a scalar multiple of the identity matrix. This step used the fact that cytoskeleton
gels are rather unusual viscoelastic fluids with the stress not being shear dominated. This led to a free
boundary problem for two variables, in our context named v for the stress in the cytoskeleton and u
for the density of myosin motor proteins. The latter actively generate stress by binding to and pulling
on the actin filaments constituting the cytoskeleton meshwork.

The first equation in is thus interpreted as a diffusion-advection equation for the concentration
of myosin molecules which are either freely diffusing inside the cytoplasm or are bound to the actin
gel and hence convected with the velocity Vv which is the divergence of the stress tensor, vI. The
second equation describes the force balance in the actin gel with the term u representing the actively
generated stress due to the myosin motors, which is assumed to be proportional to the density of
these motors. The term —kv models the dissipation of stress via traction with the substrate to which
the actin gel is linked by adhesion molecules. The distribution of these adhesions is supposed to be
uniform and constant in time for a resting cell. Moreover, the second equation being elliptic assumes
that stresses equilibrate on a much faster time scale than the motion of the actin gel, indicated by very
low Deborah numbers reported for moving, let alone resting cells [34]. This simply means that the gel
behaves more like a viscous fluid than an elastic solid on the relevant time scale. The parameter k
is the typical stress stored in the actin gel relative to the typical stress generated by myosin motors.
The second parameter present in the model is the size of the domain 2 which is measured in multiples
of VkL, where £ is the viscous length of the actin gel which describes how far the locally generated
stress acts through the network before being dissipated away. It is defined as square root of the ratio



of the viscosity and the traction coefficient.

Whereas both [2] and [4] were interested in traveling wave solutions to their respective free boundary
problems to describe steady cell motion, we will focus here on the behavior of steady states and the
possibility of finite time blow up. Steady state solutions clearly correspond to a resting cell although
we should mention that stationarity in does not imply that there is no motion inside the cell;
recall that the velocity of the actin gel is Vv. More strikingly, solutions blowing up in finite time are
interpreted as the cell being physically disrupted by too much contractile activity of myosin motors
as represented by a large total myosin mass m = fQ u which is obviously a conserved quantity for
—. While the bifurcation from rest to motion at subcritical values of m described in [4] refers to
a dynamic instability of the free boundary problem modeling a potentially motile cell switching from
rest to directed motion, blow up of solutions for large m in system (|1|) with fixed boundary relates to
the observed disruption of immobile cells upon variations of myosin activity or adhesion strength as
has been seen experimentally ([I], cf. e.g. [35] for mechanism of fragmentation of actin filaments by
myosin generated forces). Mechanical breakdown due to enhanced myosin activity and concomitant
concentration of myosin is also associated with physiological processes such as programmed cell death,
or apoptosis, as described in [IT].

To rule out possible issues of self intersection of the moving boundary as mechanism for the break down
of solutions we fixed the shape of the domain €2 occupied by the cell. Physically, this may be achieved
by letting the cell sit on a particularly sticky substrate or by providing it with an adhesive patch of
substrate of a given shape Q and making the surrounding region, viz. R?\(2, particularly hostile by
coating with adverse substances or no coating at all. Keeping the stress-free boundary condition v = 0
and the no-flux condition for the myosin molecules from the original model ([2]), we finally arrive at
— which differs from the classical parabolic-elliptic Keller-Segel system most significantly in the
boundary conditions. The peculiar condition v = 0 on Jf2 arises from the fact that myosin motors at
the boundary are not supposed to generate stress since there is nothing outside the cell to be pulled
against. There is no contradiction in the cytoskeleton gel’s velocity being different from zero at the
boundary. In fact, in a resting cell, actin is polymerized at the boundary, leading on averaege to a
radial expansion of the cytoskeleton, which is counteracted by the actin gel constantly moving toward
the center where the actin filaments are depolymerized. This retrograde flow means that the gel moves
away from the boundary at non-zero velocity.

Detecting explosion-related dichotomies in Keller-Segel systems.  Over the past decades,
significant effort in the analysis of chemotaxis problems has been directed towards excluding (e.g. [30])
or detecting blow-up (|16, 14, 29]) and the study of additional qualitative properties (e.g. [36} [26]
38, 8, 9]) in and related variants, e.g. further simplified like in [16], or rather fully parabolic and
hence more complex. Among the apparently most striking characteristics of such Keller-Segel sys-
tems, the literature has identified situations in which the occurrence of blow-up depends on the size of
the conserved total mass fQ u in a crucial manner. Specifically, when posed along with homogeneous
Neumann boundary conditions for both components in planar bounded domains 2, with arbitrary
k > 0 is known to exhibit a sharp and well-understood critical mass phenomenon in the sense that
whenever 0 < wug is sufficiently regular with fQ ug < 4w, an associated initial-boundary value problem
with ul¢—g = up admits a globally defined bounded solution, whereas for any m > 47 one can find
smooth initial data with [, ugp = m such that the corresponding solution blows up in finite time ([29]);
a restriction to radially symmetric solutions in balls increases this separating mass level to the value 87



([29]). Similar dichotomies have been detected in Neumann problems for further parabolic-elliptic and
for fully parabolic relatives of [27, [7, 14, 30]; cf. also [9], B9] for some related findings for Cauchy
problems on the whole plane = R?).

A secondary critical mass phenomenon enforced by Dirichlet conditions for v. Main re-
sults.  The present study will now reveal that when considered along with the boundary conditions
in , the system may gain a further dynamical facet that is linked to the presence of a secondary,
and apparently yet undiscovered, critical mass phenomenon.

To appropriately formulate and embed our findings in this regard, let us first summarize some fun-
damental properties thereof, as can readily be verified upon straightforward adaptation of arguments
known from the literature (cf. e.g. [37] for Part i), [37], [29] for Part ii), and [28] for Part iii)):

Theorem A Letn > 2 and Q C R"™ be a bounded domain with smooth boundary, and let k > 0.
i) If n =2 and up € C°(Q) is nonnegative with

/uo < 8m,
Q

then - possesses a global classical solution (u,v) which is bounded in the sense that there exists
C > 0 such that
[u(, )Ly < C for allt > 0. (3)

it) If n=2, then for all m > 87 there exists some nonnegative ug € C°(Q) with [, uo =m such that

the corresponding solution of (1))-(4) blows up in finite time in the sense that limsup |[u(,t)[| Lo (@) = o0
t )T

for some finite T > 0. Here, if Q = Bgr(0) with some R > 0, then ug can be chosen to be radially

symmetric with respect to x = 0.

i) In the case n > 3 and if Q is star-shaped, for all m > 0 one can find nonnegative ug € C°(Q) with
fQ ug = m, radially symmetric if Q is a ball, such that the solution of —@) blows up.

As a direct consequence for the general, not necessarily radial case, this implies the following essentially
well-known statement identifying the number 87 as a k-independent critical mass in — when n = 2,
whereas if n > 3 then a corresponding critical mass phenomenon seems absent:

Corollary B Let n > 2, Q C R” be a bounded domain with smooth boundary, and k > 0. Then

M, (92, k) := inf {m >0 ‘ There exists some nonnegative ug € C°(Q) with / Uy =m
Q

such that the solution of (1))-(2) blows up} (4)

s well-defined and satisfies
8T ifn =2,

0 ifn > 3. (5)

M, (k) = {

(In and the following, “blows up” may refer to blow-up at a finite time 7" > 0 or at 7' = c0.)
Now the first of our main results identifies a secondary mass threshold which, as can already be stated

at this stage, at least in the case n > 3 indeed differs from the value M, (Q, k) = 0.



Theorem 1.1. Let n > 2 and 2 C R™ be a bounded domain with smooth boundary which is strictly
star-shaped with respect to 0 € § in the sense that

= inf x- 0. 6
v:= inf o v(z) > (6)

Then for all k > 0,

M*(, k) := inf {m >0 ’ For all nonnegative ug € C°(Q) with / up = m,
Q

the solution of (1)-(2)) blows up} (7)
is well-defined and finite (in particular, the set in @ is non-empty) with
8r < M*(,k) < 4|im+2k|(2] ifn=2 (8)
and
0< k)< 29U Lopia inss 9)

In two-dimensional domains, however, the situation will turn out to be more subtle, involving a crucial
qualitative dependence on whether or not the parameter k is positive. As a first step toward revealing
this, let us concentrate on the special situation when €2 is a ball, in which the above enables us to
rather explicitly estimate this secondary critical mass, and to thereby detect, in particular, coincidence
of both mass thresholds in the planar case when k£ = 0 in such geometries.

Corollary 1.2. Letn > 2, R >0 and 2 = Br(0) C R™. Then for all k > 0,
8t = M,(Bgr(0),k) < M*(Br(0),k) < 87+ 2knR?>  ifn=2

and

2w, R™
n

0 = M,(Bg(0),k) < M*(Bg(0),k) < + 2nkw, R"™2  ifn >3,

where wy, denotes the (n — 1)-dimensional measure of the unit sphere dB1(0). In particular, for k =0,
M, (Bgr(0),0) = M*(Bgr(0),0) =87 for all R >0 if n=2.

On further specializing the setup by resorting henceforth to radially symmetric solutions in balls
Q = Bg(0) C R", n > 2, R > 0, emanating from initial data in the space C° ,(Q) = {p €
C%(9) | ¢ is radially symmetric with respect to x = 0}, we can rephrase part of Theorem A as follows.

Corollary C  Letn >2,R >0, and Q = Bg(0) C R"™, and let k > 0. Then

m(n, R, k) := inf {m >0 ’ There exists some nonnegative ug € C° ;(Q) with / ug =m
Q

such that the solution of (1)-(3) blows up (10)



is well-defined with
8T ifn=2,

m*(n, R, k) = M*(BR(O)’ k) - {0 ifn >3

Now the second of our main results makes sure that a corresponding secondary mass threshold, defined
in the spirit of Theorem [I1] plays the role of a genuinely new critical mass for radial solutions not only
when n > 3 and k£ > 0, but also when n = 2 and k > 0 is arbitrary, thus complementing the outcome
of Corollary in quite a sharp manner:

Theorem 1.3. Letn >2, R> 0, and Q = Br(0) C R™. Then for all k > 0,

m*(n, R, k) := inf {m >0 ’ For all nonnegative ug € C° () with / ug =m,
Q

the solution of (1)-(3) blows up} (11)
satisfies
M, (Br(0), k) = my(n, R, k) < m*(n, R, k) < M*(Br(0), k). (12)
In particular, the set in s non-empty.
Moreover,
m«(2,R,0) = m*(2, R,0) = 8, (13)
but
8 =my(2,R, k) <m*(2, R, k) for all k > 0, (14)
and apart from that,
0=mu(n,R, k) <m*(n,R,k) forall k>0 if n > 3. (15)

For the special case k = 0, the finiteness of M* (in n-dimensional balls, n > 2, but for possibly
nonradial ug) was already observed in [5] and that of m* in [6]. It is remarkable that the values of m,
and m™*, which coincide for £ = 0 and n = 2, differ for positive k. In this sense linear signal degradation
affects the blow-up affinity of and makes it possible to find two separate critical masses in the same
system.

2. Local existence and extensibility

Let us first adapt an essentially well-established contraction-based reasoning to see that similar to its
no-flux type relative, the problem — admits local smooth solutions which can cease to exist within
finite time only when becoming unbounded with respect to the L°° norm in their first component.

Proposition 2.1. Let n > 2 and 2 C R" be a bounded domain with smooth boundary, let k > 0, and
suppose that ug € C°(Q) is nonnegative. Then there exist Tynar € (0,00] and a uniquely determined
pair (u,v) of nonnegative functions

(16)

u € COQ x [0, Thnaz)) NC*HQ x (0, Thnae)) and
v e C?*(Q x (0, Thnaz))



which solve —(@ classically in Q x (0, Tynaz), and which are such that
if Trnazw < 00, then (u,v) blows up at t = Thnaq, (17)

where we say that (u,v) blows up at t = Tyay if and only if imsup, ~r, . [Ju(,?)|[ L @) = oo.
Furthermore,

u( )1 = / U forallt € (0, Traz)- (18)
Q
PrOOF.  We fix some p > n and let M := |lug||rr(q) + 1. With T'> 0 to be determined later, we set
X = {u € C([0,T) LP () | [|ull oo 0,7):200) < M, u(-,0) = o} .

Given any u € Xp := C°([0,T]; LP(Q)), for t € (0,T) letting v(-,t) € W01’2(Q) denote the weak
solution of the Dirichlet problem for 0 = Av(-,t) — kv(-,t) + u(-,t) we obtain a function v = v(u) €
CO([0, T); W2P(Q) N Wol’p(Q)) and note that due to our choice of p, elliptic regularity theory (see e.g.
[25, Thm. 37.I]) and a Sobolev embedding, we can find ¢; > 0 such that

”VU(E)HCO([O,T];LW(Q)) < ClHEHCO([O,T];LP(Q)) for all uw € X7.
According to |23, Thm. VI.39|, for each v(@), w € X7, the problem
ug =V - (Vu—uVo(u)) in 2 x(0,7), (Vu—uVo(a)) -v=0 on d x (0,T), u(-,0)=wug in €,

has a unique solution u € Vo = {u € L*>((0,T); L*(Q)) | Vu € L*(Q x (0,T))} which is nonnegative
and bounded by some ca(M) in 2 x [0, 7] (|23, Thm. VI.40]) and Holder-continuous in §2 x (0,7") (|31}
Thm. 1.3 and Remark 1.3]). We denote this solution by ®(@), thus defining a mapping ®: Xy, 7 — Xr.
For arbitrary ¢t € (0,7T), hy € (0,7 —t), hg € (0, —t—hy), we let » =1 on [0,¢), » =0 on (t+hy,T)
and linearly interpolated between t and t + hy. Given uy,us € Xy 7, we then let

olw,7) = =

T+ho
=i [ @) = 0wy @ sds (), zeRre T,

and use this regularized version of (®(u7)—®(uz))P~! as test function in the difference of the definitions
of weak solutions (cf. [23, p. 136]) for ®(u;) and ®(u2). After successively taking Ay — 0 and hy — 0
and several applications of Young’s inequality we find that with some c3 > 0,

; /Q (®(ur) — B(uz))(B)P < es(1 + M?) /0 /Q (1) — B(us))? + esc(M) /0 /Q V(01— )]

holds for every t € (0,T"), u1,u2 € Xp 1. Therefore, by a Gronwall-type argument we find that with
some ¢4 > 0,

||<I>(u1)(t)—(1)(u2)(t)||]Zp(9) < C4(ec4t—1)||Vvl—V02\|im((07T);Lp(Q)) < 0104(664T*1)HU1*U2||]Zoo((o7T);Lp(Q))

is satisfied for all ui,us € Xy 7 and all t € (0,7). Upon suitably small choice of 7', the map
®: Xy — Xy becomes a contraction. Banach’s theorem hence entails the existence of a fixed



point u = ®(u), unique within Xy, 7, whose further regularity follows from successive applications of
[13, Thm. 6.6, [22, Thm 1.1] and [I9, Thm. IV.5.3]. The extensibility criterion is a consequence
of the exclusive dependence of 7" on M, and hence on |ugl| (), Whereas is obvious in view of

and . O

The following observation on boundedness enforced by suitably small data generalizes knowledge on
similar properties in related Keller-Segel type systems ([10]), and will be of importance in our derivation
both of Theorem and of Theorem For simplicity in presentation, we confine ourselves here to
an argument based on uniform smallness of the initial data, but we at least note that, in fact, at the
cost of additional technical expense the norm appearing in could be replaced by that in Lz (Q).

Lemma 2.2. Letn > 3 and 2 C R™ be a bounded domain @th smooth boundary, and let k > 0. Then
there exists § > 0 with the property that whenever uy € C°(Q) is nonnegative with

[uol| Lo () < 9, (19)
the solution (u,v) of (1)-(2) is global and satisfies (3) with some C > 0.

PROOF. In view of a known result from parabolic regularity theory ([23, Theorem VI.40]), it is
sufficient to find § > 0 such that whenever holds, we have

sup  [[Vo(, t)| e () < o0 (20)
te(QTmaJ;)

To achieve this, we fix any p > n and then invoke standard elliptic regularity (JI2Z, Thm. 19.1]) to
obtain c¢; > 0 such that

IVellZn() < clllAp +kpllTog, — forall o € WP(Q) N WP (Q), (21)
while according to a Poincaré inequality ([I7, Cor. 9.1.4], [20, Lemma 9.1]) we can pick ¢ > 0 fulfilling

o/

/ ©? < 02/ |Ve|? for all ¢ € W2(Q) such that |{¢ = 0}| > 5 (22)
Q Q

We then abbreviate

p+2
P

2(p—1 2 2_
cg = M, e =20 p(p—1)e; and 5 =20 p(p— )er - (22|Q)P) P,

be2
smmin{ (50)7 (5)°} (23)

_ (03)
7= 35)

observing that the first restriction in guarantees that

and let

D =

with

pt2 2c4_2 2
c3y — C4§pp — c50PT? = 6—3@- <1 — ﬁ@?) + e (@ — ﬁ5p+2> > 0. (24)
2 C3 2 C3

9



Now assuming uy € C°(Q) to be nonnegative and such that holds, we may use that p > n > 2,
and that writing a := ‘g” J uo we thus know that 0 < f = (€ —a)f € C%([0,00)), to see relying on

(1), Young’s inequality, and (21)) that y(¢) := [, (u(-,t) —a)k, t € [0, Timaa), belongs to C°([0, Trnaz)) N
CH((0, Tnaz)) with
-1) 2 -1 _ _
y'(t) /)Vu—a% = —p(p2)/9(u—a)ﬁ2|Vu|2+p(p—1)/ﬂu(u—a)ﬂ2Vu~Vv
-1 _
< p(p ) / UQ(U . a);i 2‘V'U‘2
2 Q
p(p— 1)1 _
< PP, 0 [ oy
Q
< =D ) Llu HP” for all ¢ € (0, Tynaz)- (25)

Since ensures that m = [, u > a-|{u > a}| and thus |[{u < a}| > % for all t € (0, T)az) according
to our choice of a, we may hence utilize (22) to estimate

2= [ vt-off

whereas noting that a < |Q| by (19} . we obtain the inequality

2(p—1
> M / (’LL _ a)]j- — ng(t) for all ¢t € (O,Tmaa:)7
pc2 Q

2
Lr@) {u>2a} {u<2a}
pt2
< {2 (= ap+ ariol |
{u>2a}
P2
< {2py 22PyQ|1 Pap} v
< i plo—Der- {(2y(e)> + @0 7o) )

p+2

cay ® (t) + c50P T2 for all t € (0, Tnaz)-

Therefore, implies that

p+2

Y () +esy(t) —cay » (1) — 36772 <0 for all ¢ € (0, Trnaz),

so that since along with the second requirement on § in guarantees that
y0) = [ (wo—a)t < o7j0 <.
Q

a comparison argument on the basis of asserts that y(t) < 7y for all ¢ € (0,Tinaz). As thus
SUPye(0,Tmas) |40+ 1) Lr () 1s finite, once again relying on we obtain and conclude as intended.
O

10



3. Mass bounds for steady states. Proofs of Theorem and of Corollary

Our strategy toward proving Theorem will be based on the link between solutions to — and
solutions of the corresponding stationary problem

Vu“—Vv:O, x € €,
Av—kv+u=0, x € Q, (26)
v =20, x € 010,

as established through an energy-based argument in the following.

Lemma 3.1. Let n > 2 and Q C R" be a bounded domain with smooth boundary, and let k > 0 and
0 < ug € C°(Q) be such that the solution (u,v) of (I)-(2) from Proposition is global in time and
bounded in the sense that u € L*°(2 x (0,00)). Then there exist (tj)jen C (1,00) and functions uss
and v from C?(Q) such that use > 0 and veo > 0 in Q, that t; — 00, u(-,t;) = Uso and v(+,t;) = Voo
in CO(Q) as j — oo, and that (s, Vso) solves with [o s = [ uo.

PRrROOF.  Using that v > 0 in Q x (0,00) by the strong maximum principle, by means of a standard
computation we obtain the identity

¢
+/ D(r)dr = F(1)  forallt> 1, (27)
1
where we have set F(t 2 fQ |Vv P +E [0 (1) — [ ul t)+ Jqu(-, t) Inu(-,t) and D(t) :=
fQ |2V \/ u( \/ u( 2 for t > 0. Now since u is bounded and nonnegatlve it readily follows
that infy~ .7-'( ) > —o0, by . meamng that [ D(7)dr is finite, so that we can pick (¢;);en C (1,00)
such that t; — oo and
QV\/ (-, t5) — \/ (-, t;)Vou(-,t;) =0 a.e. in (28)

as j — o0o. Once more due to the boundedness of u, we may next invoke elliptic regularity theory
(J13]) to see that also Vv is bounded in € x (0,00), and that thus we may employ a standard result on
Hoélder continuity in parabolic equations under no-flux boundary conditions (|31]) to obtain 6; € (0,1)
such that (u(-,t))¢>1 is bounded in C% (Q). Again by elliptic estimates, this entails boundedness of
(v(-,t))¢>1 even in C*+91(Q), whence the Arzela—Ascoli theorem provides a subsequence of (¢;);en, for
convenience again denoted by (¢;)jen, such that u(-,t;) — use in C%2(Q) and v(-,t;) = veo in C%(Q)
as j — oo with 02 921 and some nonnegative limit functions 1, € C%(Q) and v, € C?(Q) for which
using and (2) we can easily verify that —Ave + koo = Uso In 2 with v, = 0 on 02, and that

fQ Uoo = fQ UuQ. Moreover, along with this entails that as j — co we have

2V /u(-,t5) = Voo VUso in C%(Q)

for some 63 € (0,1). Therefore, \/u(-,t;) = /oo 13014'93 (Q) as j — 00 and 2V /Uee = 1/Uoo Vs i
2, which in particular means that if we pick z¢ € 2 such that ueo(20) = [[teoll () = ﬁ Jo uo >0,

then in the connected component C of {x € Q | ux(x) > 0} containing x¢ we have V(In uy — vs) = 0

11



and hence can find ¢; > 0 such that Inus = voo +¢1 in C. As Iné — —o0 as £ N\ 0, however, this
ensures that actually C = Q and that thus u., = e”‘xjcl is positive in  and belongs to C?(€2), and
that also the first equation in holds throughout €. O

Now a crucial observation, generalizing and quantitatively sharpening a statement from [4] concen-
trating on radial solutions in a disk, rules out large-mass steady states in strictly star-shaped two- or
higher-dimensional domains:

Lemma 3.2. Letn > 2 and Q2 C R™ be a bounded domain with smooth boundary such that

= 1 . 2
v:= min z-v(z) >0, (29)

and suppose that k > 0. Then whenever u € C*(Q) N C?(Q) and v € C°(Q) N C%(Q) are such that
u >0 andv >0 in Q and that (u,v) solves , we necessarily have

/ w< 2N o). (30)
Q v

Proor. We firstly integrate the second equation in to see that

/Qu:/-c/ﬂ—/mg (31)

and in order to estimate both summands on the right-hand side herein appropriately, we next use x-Vv
as a test function for the second equation in to find the identity

/QAU(:IJ -Vv) — k‘/ﬂv(m -Vv) = — /Q u(z - V). (32)

Here following a well-known observation ([32]), twice integrating by parts and using our definition of
~ we obtain that

/QAU(J;.W) - /|Vv|2 1/95 V|Vl + / e v)

ov
sV U2 xX - v
—3 | @ik« [ Tiavo)

+/ (z - )| Vol?
2 Joq

> 7/ Vo, (33)
2 Joa
because n > 2, and because the properties v|go = 0 and v > 0 in Q imply that on 92 we have
Vv = —|Vu|v and hence %(a: Vo) = (z-v)|Vo|?.

Apart from this, again due to the homogeneous Dirichlet boundary conditions satisfied by v. another
integration by parts yields

—k:/Q v(w - vv):—g/gx-vqﬂ:I;/Q(v-xw:?/gv?, (34)



and using that «Vv = Vu by we infer from a final integration by parts that

[t v == [avu= [ s [ @z [ (35)

once more because x - v > 0 by .
Now a combination of with — reveals that

k
7/ \Vv\Q—i—n/vQSn/u
2 Joq 2 Ja Q

and that hence, by Young’s inequality,

k/v— ov k v—l—/ |Vl
Q on Ov Q o0

IN

k Q
< {/v2+kmy}+{7/ yw2+"|a|}
4 Ja An Joq v
1 Q
< /u+m|+”‘a J
2 Ja gl
In conjunction with , this entails (30)). O

A combination of the latter two statements readily yields the first part of our main results:

PROOF of Theorem Given any m > M—FQMQ] and any function ug € CY(Q) with [, up = m,
we conclude from Lemmathat — has a solution (u,v) for these initial data. If this solution were
global and bounded, Lemma would yield a solution (uee, Vo) Of @ with fQ Uso = M, contradicting
Lemma which is applicable thanks to @ Accordingly, (u,v) cannot be global and bounded,
hence blows up at Tiee € (0,00]. It immediately follows that the set in is not empty and hence
M*(Q, k) a well-defined nonnegative number which moreover satisfies the upper estimates in and
@D, respectively. The left inequality in is obvious from Corollary B, whereas in the case n > 3,

positivity of M*(£2, k) is an evident by-product of Lemma O
Proor of Corollary Since for each x € 0Q) we have v(z) = fé—‘ and hence z - v(z) = R, all
statements are obvious from Theorem [1.1} O

4. A secondary critical mass phenomenon for radial solutions. Proof of Theorem

In view of Corollary C, Corollary[I.2] and Lemma verifying the occurrence of a genuinely secondary
critical mass phenomenon in the flavor of Theorem [I.3] amounts to making sure that whenever the
degradation parameter k in ({1) is positive, in any planar disk we can find global bounded radial solutions
at some mass level larger than 87. To accomplish this, for such radial solutions (u,v) = (u(r,t),v(r,t)),
r € [0, R], of (I)-() in @ = Br(0) C R? with R > 0, again maximally extended up to Trnes € (0, 00] in
the style of Proposition we follow the idea of [16] and [6] and introduce the cumulated quantities

N
w(s, 1) = /0 pulp,idp s € [0, R, t € [0, Toas), (36)
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and s
(s,t) = k / po(pt)dp s € [0, R, t € [0, Tynas), (37)
0
as well as

N
UM@:A puo(p)dp, s € [0, B2, (38)

Then from the nonnegativity of u, and from (I)) as well as (2)), it follows that ws > 0 in [0, R?] X [0, Tjaz)
and

wy = 4swgs + 2wwg — 22w, s€(0,R?), t € (0, Thaz),
w(0,t) =0, w(R%t) =% - [uo, t € (0, Tnaz), (39)
w(s,0) = wp(s), s € (0, R?),

and the core of our strategy will consist in appropriately making use of the rightmost absorptive
contribution to the first equation herein in order to ensure that some of these solutions remain bounded
in C1([0, R?]) even though satisfying w|,_p2 > 4. This will be achieved by means of a parabolic
comparison with stationary supersolutions, to be constructed in Lemma [4.5] on the basis of a pointwise
lower estimate for the function z which plays a central role in this additional dissipative part, but which
through — and is linked to w in a nonlocal manner.

As a first step toward adequately coping with this, to be completed in Lemma [£.4] let us invoke a
comparison argument to derive a fairly rough but useful lower bound for w.

Lemma 4.1. Let R > 0 and Q = Br(0) C R?, let k > 0, and suppose that ug € CP, () is nonnegative
and such that wg as in satisfies

wo(s) > 6s° for all s € (0, R?) (40)
with some § > 0 and some
1
521+:/%. (41)
4 O
Then
w(s,t) > 65 for all s € (0, R?) and t € (0, Traz)- (42)

PrOOF. We abbreviate m := fQ uo and first observe that since

k/v:/u-i-/ % o forall £ € (0, Thas)
Q Q 6981/

according to the second equation in and (18], the function z from (37)) satisfies
R m
z(s,t) < k:/ pv(p,t)dp < o for all s € (0, R?) and any t € (0, Taz)-
0 i

Therefore, writing
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by nonnegativity of w and w, we can estimate

m
dswg, + 2ww, — 2z(s, Hhw, > 4dsw,, — —w,
T

= 48(8 - 1)5sP 1 — . ggsBl
T
> 0  forall s€ (0,R?) and t € (0, Taz), (43)

because asserts that 45(8—1) > 3. Since implies that w(s,0) < wo(s) for all s € (0, R?), and
that necessarily also w(R?,t) < wo(R?) = w(R?,t) for all t € (0, Trmaz) by (18], noting that w(0,¢) = 0
for all t € (0, Tnay) we infer from the comparison principle in Lemma from the appendix that due
o indeed w > w in (0, R2) x (0, Trnaz)- O

As a consequence, we obtain the following statement on lower control of the mass accumulated in the
disk Bz (0) throughout evolution, uniform with respect to mass levels within any fixed interval.
2

Corollary 4.2. Let Q = Bg(0) C R? with some R > 0, and let k > 0,m > 0, and M > m. Then
there exists C' > 0 such that for all nonnegative ug € Cr(‘)ad( ) fulfilling

m < / up < M (44)
Q
as well as
][ uo 2][ uo for allr € (0, R), (45)
r(0) Br(0)

the solution (u,v) of (I)-(2) satisfies
/ u(-,t) >C  forallt € (0, Thaz)- (46)

BR(0)

2

PROOF. In order to apply Lemma to =1+ 1 M and 6 := 25, we note that when rewritten
in the variables w, z and s from and . . together Wlth 4)) guarantees that

ms
> for all 2).
wo(s) > o R or all s € (0,R%)
As 8 > 1, namely, this entails that
wls) o, m
dsf T 2miRZsP1
S m
= 276R?%.- (R2)A-1
B m
 276R2P

=1 for all s € (0, R?),
whence Lemma ensures that for w as in we have

w(s,t) > ds” for all s € (0, R?) and any ¢ € (0, Tynaz)-
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As a particular consequence, this implies that
R? R2\ 5
/ u(-,t) =2m - w(—,t) > 2 - 6(—) for all t € (0, Trnaz)
B (0) 4 4

and thereby proves ({46]). O

This lemma will be combined with the following well-known result on positivity of the kernel associated
with the solution operator for the Helmholtz problem solved by v:

Lemma 4.3. Let Q = Bp(0) C R? with some R > 0, and for k > 0 let G}, denote Green’s function of
—A + k under homogeneous Dirichlet boundary conditions in Q. Then Gi(x,y) > 0 for all x € Q and
y € Q\ {z}, and there exists C > 0 such that

Gi(z,y) > C  for all (z,y) € (Bg(()) X B§(0)> \ {(:ﬁ,g]) € Br(0) x Bx(0) ‘ F= g}.

PrROOF.  This can be found in [40], Section 4.9]. O

In fact, by means of a corresponding integral representation the function v can be estimated from
below in such a way that its cumulated version satisfies a linear lower bound in the following sense:

Lemma 4.4. Let Q = Bp(0) C R? with some R > 0, and suppose that k > 0,m > 0, and M > m.
Then there exists C > 0 such that whenever ug € C° ,(Q) is nonnegative and satisfies as well as

, the function z given by fulfils
z(s,t) > C-s  forall s € (0,R?) and each t € (0, Tyaz)- (47)

PROOF.  According to Corollary [£:2] we can pick ¢; > 0 such that for any choice of uy with the
indicated properties we have

/ u(,t) > for all ¢ € (0, Thnaz)-
Bg(o)

Thus, if relying on Lemma[d.3|we fix ¢o > 0 such that Green’s function Gy, of —A+k under homogeneous
Dirichlet conditions in € satisfies Gi(z,y) > c2 whenever x € Br(0) and y € Br(0) \ {z}, due to
2 2

— and the nonnegativity of Gy and v we can estimate
vat) = | Gulepulydy
Q

/ Gk(xay>u(y7t)dy
B

r(0)
2

> 02/ u(y, t)dy
Bg(o)

> e for all x € B% (0) and t € (0, Tynaq)-

Vv
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By definition of z, this entails that

z(s,t) = 2£ v(z,t)dx
T JB s(0)

k
2 ez |Bys(0)

k R
= 61;2 -8 for all s € (0, T) and t € (0, Trnaz)-

As z(-,t) is nondecreasing on (0, R?) thanks to the nonnegativity of v, this moreover entails that

2
2(s,t) _ a2k B ek R?

> = — 2)
2 > 1 : for all s € [ o R2) and L€ (0, Ta),
and that thus holds with C := %. O

The key step in our derivation of Theorem can now be found in the following essentially explicit
construction of a stationary supersolution to that corresponds to a mass level exceeding the value
8.

Lemma 4.5. Let Q = Br(0) C R? with some R > 0, and let k > 0. Then there exist m = m(R, k) >
8 and a function w € W2>°((0, R?)) such that

w(0) =0 (48)
i addition to o
2 m
- 4
W) = (19)
and _
_ ms 9
w(s) > 52 for all s € (0, R?), (50)
and such that whenever ug € C’Sad(ﬁ) s a nonnegative function for which wg from satisfies
4s _
o < wp(s) < w(s) for all s € (0, R?), (51)

the solution of - has the property that
w(s,t) < w(s) for all s € (0, R?) and t € (0, Trmaz) (52)

with w as defined in , so that

t
IEY)

< 0. (53)
(5,6)€(0,R2) x (0, Tynaz) S

PROOF.  Given R > 0 and k > 0, upon application of Lemma [£.4] to m := 87 and M := 107 we
obtain ¢; > 0 such that for arbitrary nonnegative ug € C° ,(Q) fulfilling and (45), the function z

in satisfies
z(s,t) > 18 for all s € (O,RQ) and t € (0, Trnaz), (54)
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where without loss of generality we may assume that

4
C1 S ﬁ
We next use that In % — 400 as 59 \, 0 to fix s € (0, R?) sufficiently small to ensure that
C1 R2 C1 1
. S0 2 R2,

noting that the latter implies that

R2
9 Cl(g_
s%~/ o 2en (T 0)dg > 5.

S0

Indeed, using that e%lf > 1+ 5 for £ > 0 shows that

R2 o R2 c1
S0 / o230 %0)gs > 5. / o 2. {1 + 5(0 — 30)}d0

S0 S0

cl 1 1 €150 R2
— s (12 ).(f_i) aso
%0 ( 9 %0 so  RZ? + 2 In S0

a1 c1 o 180 |, R?
— 1_(7 7) B R
2 TRe) 0Tttt 5y
C1 R2 C1 1
o g0 (5 )
> l+s0 {2 1150 2+R2}

> 1
by . Now enables us to pick b > 0 small enough such that

RQ
€1
52 / 0220 dg > 5o + b,

S0

which in turn warrants the existence of € € (0,1) such that still

ape (R? e
So? - / o e 0 do > 5o+ b+ <. (so+b)%
. 1b

Observing that

2+¢
_ 2
S
2+¢ °
< So+b+— - (s0+Db)>2
0 4b 0

(58)



due to e.g. the monotone convergence theorem, from we infer by means of a continuity argument
that we can finally fix ¢y € (0, ¢1] such that the precise equality

4te R2 e C
st . / o ROy = g+ bt - (s0 4+ b)° (59)
50

holds.

Upon these choices, we now let

- Win () if s € [0, so],
w(s) = ) 5 (60)
Wout () if s € (so, R?],
where 4
S
in =, ) ) 1
Win($) P s €10, so (61)
which already ensures , and where wy,; denotes the solution of the initial-value problem
450%Wous + 2(4 + €)OsWout — 2¢25 - OsWout = 0, s € (s0, R?), (62)
wout(SO) = win(SO)a aswout(SO) = aswin(SO)-

Then @ evidently belongs to C*([0, R?]) N C2([0, so]) N C?([so, R?]), and hence also to W2>°((0, R?)),
with m S

s = d ss = -

Ws(S) FEE and  Wss(S) PFE

and with an explicit integration of showing that

Wy(s) = wS(Sg)-exp{/s:(—ZL;g';+C22>d0}

for all s € (0, s¢), (63)

4b i
= m . <S£> : 6?2(5_80) for all s € (SO,R2] (64)
0
as well as
. o 4b S 150\ 3° 2 (o—s0)
ey - @ . - g—S8 d
w(s) w(80)+(30+b)2 /80 (U) ez o
4 4b dte s e ¢
= Soiber (o0 102 - 542 / o5 eT0)ds  for all s € (so, R). (65)
50

In particular, and guarantee that thanks to ,
w(s) < w(R?)

2

4s9 4b e / _dte (5 g
= . . g —S d
So+b+(80—|—b)2 So N o2 ez o
450 4b g 2
— . b+ —. b }
s0t+b | (s0+D) {50+ tgpoth)
= 4+¢  forallse[0,RY, (66)
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while recalling the inequality cs < ¢; and we directly obtain from and that

25Wss(s) = —(44¢e— cas)Ws(s)
—(4+¢e — R ws(s)
—(4 — c1 R, (s)

0 for all s € (s, R?)

AN VANVAN

and that hence, by ,
Wss(s) <0 for all s € (0, R%) \ {s0}.

In conjunction with , the latter concavity property in particular implies that indeed both
and hold if we let T := 27 - (4 + €), where we note that our restriction € < 1 warrants that
m < 10m = M. As obviously also @ > 81 = m, assuming henceforth that ug € C?ad(ﬁ) is nonnegative
and such that is valid, we firstly observe that in fact applies to the function z thereupon
defined through , whence again using that ¢y < ¢; we may infer from , , and that

Wy — AsWgs — 20MWs + 2205 = —AsWgs — 2WWs + 2270
> —4sWes — 2(4 + £)Ws + 2c25Ws
=0 for all s € (sg, R?) and t € (0, Tynaz),

whereas, simply by nonnegativity of z and ws, ensures that

Wy — ASTWeg — 20Ws + 225 > —4sWss — 2WWs
=0 for all s € (0,50) and ¢ € (0, Trnaz)-
Since clearly w(0,t) = w(0,t) = 0 and w(R?,t) = w(R?,t) = 4+¢ for all t € (0, Tyaz), We may employ

the comparison principle from Lemma to conclude that indeed holds. Finally, follows
from together with boundedness of W, and . O

In order to prepare an appropriate conclusion on boundedness of w; from this, let us add the following
observation on a linear upper bound for z.

Lemma 4.6. Letn=2,R > 0,Q = Bg(0) CR?, and k > 0 and let ug € C2, ,(Q) be nonnegative and
such that w taken from satisfies

t
wp WD

< 0. (67)
(s,£)€(0,R2) X (0,Tmaz) S

Then there exists C > 0 such that
2(s,t) < Cs for all s € (0, R?) and t € (0, Traz), (68)

where z is as in .
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PrROOF.  Utilizing (67)), let us define ¢; > 0 such that w( D < ¢ forallse (0, R?) and t € (0, Trnaz)-
Then since
2(R%t) =v(R,t) =0  forallt e (0, Thae)

due to the Dirichlet condition on v in , and since by we moreover have
dszss(s,t) = k(2(s,t) —w(s,t)) > —kw(s,t) for all s € (0, R*) and t € (0, Trnax)

due to the nonnegativity of z, on integration we infer that

R2
zs(s,t) = 0—/ zss(0,t)do

k[T w(o,t kR?
< 4/ M(lo‘ < CIT =:cy for all t € (0, Tnqe) and any s € (0, R?).
s o

After one more integration, in view of the fact that z(0,¢) = 0 for all ¢ € (0, Tiyqz) this shows that
z(s,t) < cas for all ¢ € (0, Tjnae) and s € (0, R?)

and thereby readily entails . g

Now employing a Bernstein-type argument in the style of [41, Lemma 4.1], we can indeed turn the
outcome of Lemma into an L*° bound for u by means of the following implication.

Lemma 4.7. Letn=2,R > 0,2 = Bgr(0) C R%, and k > 0 and let 0 # ug € C° ,() be nonnegative
and such that w from @ satisfies (@) Then there exists C > 0 such that

|u(-t)|| ooy < C for allt € (0, Thaz)- (69)
PRrROOF. In accordance with and , we first fix ¢; > 0 and ¢g > 0 such that
w(s,t) <c1s and  z(s,t) < cas for all (s,t) € (0, R?) x (0, Tynaz)-

With 7 := min{1, %Tmax}, the continuity properties of u stated in Proposition enable us to find
c3 > 0 satisfying
wy(s,t) = u(v/s,t) <ez  forall s e 0,R?,tel0,7], (70)

and positivity of u(-,7) in , as ensured by the strong maximum principle, warrants the existence of

¢4 > 0 such that

ey < %u(\/@ 7) = ws(s,T) for all s € [0, R?].

If for c5 := min{Qc‘*, 27THU/O||L1(Q)} exp(—2R?) we let w(s,t) := 05( p(2s)—1), s € [0,R?], t €
[T, Tnaz), then w(s,7) < ¢ys for s € [O,RQ], w(R?,t) < iﬂ”uoﬂp( w(R?,t) for all t € [, Tiaz),
and, furthermore, w(s,t) > cgs for all (s,t) € [0, R?] X [7, Tynaz) with ce := “4>. Since

2 ¢
wy — 4swg, — 2ww, + 22w, <0 — 4805(622> For0+ 20286556 25 =0in (0,R?) % (7, Tynaa),



a first comparison argument thus shows that

w(s,t) > w(s,t) > cgs for all (s,t) € (0, R?) x [, Tynaz)- (71)

To conclude our series of selections, we note that boundedness of w and non-degeneracy of in
(%27 R?) x (0, Tyhaz) allows us to invoke parabolic Schauder theory in the form of [I9, Thm. IV.10.1]
so as to obtain c¢7 > 0 fulfilling

ws(R%,t) < ¢7 for all t € [, Taz)- (72)

For a > 1, we now let

, (s,t) € (0, R?] x [7, Tynaz),

Yo(s,t) := ¥

and observe that then ensures that letting y,(0,t) = 0 for ¢t € [7,Tinee) extends y, so as to
become continuous in all of [0, R?] x [7, Tyaz ). Moreover, from and we know that y, (R?,t) <

2 2
RQ(O‘*UE—Z for all t € [, Tynaz), while combining with warrants that y.(s,7) < R2(a*1)i—3
for all s € (0, R?]. In the following, we fix T € (T, Tjnaz) and let (so,to) be any point at which the
restriction of y = y, to (0, R?) x (,T] attains its maximum. Then

2 3
_qw WsW w
0=ys =as§ -2 + 255 —>2 — 805 at (so,to) (73)
w w
and
0> _ 1)s@—2 w; Ao 1 WsWss o am1Ws 5 o WaWss
> Yss =a(a — 1) o + 4as) o oo 5 hsh— o
2 4
w wsw w
+ 285 =22 4 255 2 4 255 —% at (so,to) (74)
w w
as well as

2
_S

w
0 <y = 28— wst — 8§ —5 W
w w

2
= 258‘%(4@055 + 480Wsss + 2w 4 2Wwss — 22,Ws — 22Wss) — 38‘%(43011)35 + 2ww, — 2zwy)

wsw w w w
= 4sg - 255 —22 485G —wss — 428G —Wss — 458‘“—‘;1085
w w w
w3 w2 3
(03 (e S (0% S e S
+ dsfwswss + 25 P 4sg s + 2zs§ 2 at (so,to). (75)

Here we note that, evidently, (73] entails that

ws [(Ws o
Wes = — | — — — at (so,%0),
° 2 (w 80> (50, t0)
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whereas shows that hence

25aw5w533<_5aw§ wy  « 2—2a5“*1wf3 ws o
O w — 92w \ w EN) O w \w S0
5 3 2 3 4
#3550 (- 2 )~ afa - s 4 2asf 2 - 25
1 5 4 ) 1 3 2 W 2
o S oa— S oa—
(o) (oo e e
3 2
_1Wg —w
=-Z a EJF (1+2) o ﬁ at (so,to)

Inserting these latter two pieces of information into , we obtain

3 3 w2 2 2
0 <4sg (—20458‘110; +a (1 + ) a—2t ) +458‘% <ws _ a) _ 2258% <ws _ O‘)
w w w \w S w \w S

w? 3 2 3
ws  a w a w w w
2so‘+1 s = — +288w2 [ = — — | +285—= — 4sf2,—= + 2253 —2
w2 0 0 0, 92
w8 w S w w w
w 3 3
at+1W Vs Wy « a « Wy « a
= —2s e + E(—6a50 + 4sg + 2asp) + 3(250 + 2sg)
w> 2 2
_ _ _ W w
Y ( a2+ a)syt —das§ ) — 2asy w? + 20258 1;‘9 — 4s(zs ws
4 w? w2 w2
—2““%-}—4 74_220417_,_20[23 1%
w
wh w2 Lw?
< - SS‘H—S + 488 ww + 20755 1— + 202851 == in (s0,to),
w3 w

so that finally

4
1w”  at1Ws

y_sowg O w3
1w2 2
< —— |48y ww+2a2a1 +2 zsal
S0 w2 w

=4dsg” 2w + 2025 0 2w+ 2asy 2wz

< deisgt + 20215y 4 2acieas] at (so,to).

This entails that

2 2
Ya(s,t) < max {RQ(“_l)Z?,Rz(a_l)Z?’A ‘;’38‘“ + 2a20138‘_1 + 204010238“} for all (s,t) € [0, R} x[7, Tynaz),
6 6

whence letting a N\, 1 we conclude that

2 2
¢ ¢
sup 3(3, t) < max {7, 3, 4C?R4 + 2¢1 + 20102R2} ,

5€(0,R2) 1€ (. Tyman) W(5,1) C6 C6
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so that boundedness of ws in (0, R?) X [T, Tjaz), and thus of u in Q X [7, Tiuaz), results from (67)).
Together with , this concludes the proof. O

The second of our main results has thereby actually been achieved already:

PRrROOF of Theorem . The set in is a superset of that featured by , hence non-empty.
The first identities in , and have precisely been stated in Corollary C already. Both
inequalities in are obvious by definition, and in view of Corollary directly implies .

Finally, the strict inequality in can be verified by once more employing Lemma whereas that
in can be seen as follows: Given R > 0 and k > 0, we take m(R, k) from Lemma [4.5]and use that
m(R, k) > 8 in choosing any m > 87 such that m < m(R, k). Then simply defining

m J—
R e

we see on applying Lemma in conjunction with Lemma [£.7] and Proposition that the corre-
sponding maximally extended solution (u,v) of — indeed is global in time and bounded in the
sense that holds. In particular, this entails that indeed we must have m*(2, R, k) > m > 8x for
any such R and k. O

up(x) =

5. Consequences for and numerical observations concerning steady states

Corollary 5.1. Let 2 = Bp(0) C R? with some R > 0, and let k > 0. Then for all m < m*(2, R, k),
there exists at least one pair (u,v) € (C*(Q))? of radial functions with u > 0 and v > 0 in Q which
satisfy fQ u = m and solve the stationary problem @) in the classical sense.

PRrROOF.  This is an evident consequence of Theorem [I.3] when combined with Lemma [3-] O

In fact, simulations suggest the following

Conjecture 5.2. For Q = Br(0) C R? with R > 0 and k > 0,

(i) there is a unique steady state with [ou=m for each m € [0,m,(2, R, k)],
(i) there are two steady states with [,u =m for each m € (my(2, R, k), m*(2,R,k)), and
(i) there is a unique steady state with [, u = m*(2, R, k).

As detailed in [4], these steady states form a continuum and can be parametrized by ||u||ze. In figure
[ the curves of steady states in the m-A plane are shown where A is the Lagrange multiplier entering
problem with & = 1 upon integrating the first equation to u = Aexp(v) and plugging this into
the second equation to obtain

(76)

—Av+ v = Ae", x € Q,
v =0, x € 0N

As the curves are traced from the origin to the point (87,0), the norm |lu||z~ increases, and the
solution becomes more strongly concentrated near the origin. The limit point (87, 0) would represent
the singular Dirac-solution v = 87dy. The observed maximal values of m = [, u for which steady states
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A Steady States in disks of different radii

Maximal total mass at steady state
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Figure 1: Left: Curves of steady states as solutions of [76} shown is the Lagrange multiplier A plotted against
the total mass m = fQu for k = 1 and disks Br(0) € R? of radii R = 1, R = 2, and R = 4, respectively.
Note the more pronounced tilt to the right for increasing R and the common end points (0,0) and (8, 0) for
all curves. Right: Log-log plot of the maximal value of m = [, u, corrected for 8, in numerically found steady
state solutions in @ = Br(0) C R? depending on R for different values of k. The data points are the values
determined from simulation, the dashed lines correspond to the curves m — 8t = krR2.

are found, depend quadratically on the radius and hence linearly on the domain size as predicted by
the upper bound on M*(Bgr(0), k) for n = 2 from corollary and behave approximately as

m*(2, R, k) ~ 87 + krR>. (77)
Indeed, the steady state solution maximizing the total mass for large R exhibits a small peak at the

v maximal mass solution R=10 maximal mass solution R =25 maximal mass solution, R =250

1.4 1 . 1

1.2 4 A b

1.0 A k

0.8 A k b

0.6 b b

0.4 1 1

0.2 A g i

0.0

0 2 4 6 8 10 0 5 10 15 20 25 0 50 100 . 150 200 250

Figure 2: Solutions vmax (as function of r) with maximal total mass m = AfB e’ in Br(0) for K = 1 and increasing
values of R = 10, 25, 250 (left to right).

origin, a wide plateau with the value vy ~ 1, and decreases to zero in a thin annulus given by r < R.
This behavior becomes obvious from the radially symmetric form

~/

7+ ”7 ko= —Aexp(@), 0<r<R, 7(0) =0, 5(R) =0 (78)
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of the steady state problem . For large R, the maximal value A, of A allowing a solution approaches
ke~!, meaning that the solutions v+ of kv = AeV are close to 1 for A close to A.. Since v are the values
of v satisfying the differential equation in as constants, we can expect plateaus in the solution at
v~ 1. As we moreover observe that for large R the maximal total mass is attained at Apmax < Ac it is
not surprising that the maximal mass behaves like

L 2mk [

reldr 4 small contributions for r 2 0 and r ~ knR?  (79)
€ Jo

R
m* = 27TA/ rexp(0(r))dr
0
where the small contributions of the peak near » = 0 and the boundary layer near r = R contribute
with opposite signs.

Figure [5] illustrates the shape of the mass maximizing solutions for different values of R. The plateau
and lack of a pronounced peak at the origin are clearly visible for large R = 250.

6. Discussion and biological interpretation

Having found three distinct solvability behaviors for — in two dimensions, viz. global solutions
for any initial conditions with m = [, up < M,(Q, k), unconditional blow up in finite time for m >
M*(Q, k), and the coexistence of both global and blowing up solutions for M, (£, k) < m < M*(Q, k),
we shall now briefly discuss what these results mean for the cytoskeleton of a hypothetical cell.

As described in [24], increased myosin activity — corresponding to larger values of m — can result in
the total disruption of cells. This may be interpreted as the solution to the free boundary problem
associated with (I)-(2) (cf. [4]) breaking down due to  becoming disconnected. This kind of domain
blow up — breakdown of the solution accompanied by singularities in domain shape — has also been
discussed by [33] in one dimension where blow up in our sense — that is, ||u|lcc — 00 in a stationary
domain — can be ruled out. Our results show that in two dimensions, the appropriate setting for a
keratocyte fragment or a thin amoeboid cell on a flat substrate, classical blow-up is to be expected as
well. This may be viewed as strong concentration of myosin in small regions of the cell, thereby locally
disrupting the actomyosin meshwork. Clearly, upon this disruption the model will not appropriately
describe the cytoskeleton anymore and would have to be replaced by another one.

Acoording to this view, the regime m < M, will be thought of as describing a cell comfortably coming
to rest on its (very sticky) substrate, and the solutions will be expected to approach the unique steady
state solution with well defined distributions of myosin u and the stress v. Increasing m into the
intermediate region M, < m < M™* allows different fates, depending on the precise shape of the
initial conditions. A cell with initial strongly concentrated myosin distribution ug will be expected to
suffer disruption of its cytoskeleton while moderately concentrated uy may allow for a global solution
approaching the presumably stable, weakly concentrated steady state. Further increasing m beyond
M™ should then lead to disruption, no matter how myosin is initially distributed inside the cell.

That the difference between my (2, R, k) and m*(2, R, k) increases with R, as suggested by figure
has a physical interpretation as well. Recall that, given k, the cell size R is measured in multiples of
VEL with £ being the viscous length of the actin gel. For small R, any locally generated stress will
be felt throughout the cell, while for large R, stresses generated at one place in the cell have little
impact at places far away. The stress v is supposed to vanish at the boundary, and the lower branch
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of the two steady state solutions indicated in figure [I] for m, < m < m* comprises solutions which
are monotone in r but not concave down. These solutions rather feature a peak at the center of the
cell, at » = 0, where myosin is concentrated and the stress is high, a plateau at intermediate r with
almost constant stress and u =~ kv, and a region of further decreasing stress at the boundary. If the
cell is large compared to the viscous length, a peak in the center can easily be established without the
locally high stress being felt at the boundary, and a wider range of this type of steady states can be
imagined. Recall that these steady states are expected to be unstable, and starting close to these, the
solution to the time dependent problem should be expected to blow up in finite time or to relax to the
supposedly stable steady state on the upper branch.

It should be noted that the above discussion refers to an immobilized cell that cannot undergo shape
changes or the bifurcation to a traveling wave solution. This switch from rest to steady motion occurs
at even lower values m < Mj in the free boundary problem, and it cannot be ruled out that traveling
wave solutions survive as global solutions for m > M™*. In fact, the local disruption of the actomyosin
meshwork has been implicated in the very symmetry breaking initiating cell motion [42]. Still, even
higher values of m may destroy this mode of motion and lead to physical disruption of the cell as
indicated above [24].

7. Appendix: A comparison principle for (39)

Let us finally extract from [3] the following comparison principle for problems of type , forming
a reduced version of an actually more comprehensive statement involving more general degenerate
parabolic operators.

Lemma 7.1. Let L > 0 and T > 0, and suppose that w and W are two functions which belong to
CY([0,L] x [0,T)) and satisfy

wgy(s,t) >0 and w(s,t) >0 for all s € (0,L) and t € (0,T)
as well as
w(-t) € WEX((0,L)) and (- t) € W2 ((0,L))  for allt € (0,T).

If for some a > 0 and some uniformly continuous b = b(s,t,&) = (0,L) x (0,T) x [0,00), Lipschitz
continuous with respect to € € [0,&p] in (0,L) x (0,T) x [0,&)] for any & > 0, we have

w, < aswg, +b(s, t,w)w, and Wy > asWys + b(s, t,W)ws forallt € (0,T) and a.e. s € (0,L),
and if moreover
w(s,0) < w(s,0) for all s € (0,L)
as well as
w(0,t) <w(0,t) and w(L,t) <w(L,t) for allt e (0,T),
then

w(s,t) <w(s,t) for all s € [0,L] and t € [0,T).
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PrROOF.  This immediately results from [3, Lemma 5.1]. O
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