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Abstract A realistic and effective model to simulate phoretic Brownian dynamics swimmers based on
the general form of the thermophoretic force is here presented. The collective behavior of self-phoretic
dimers is investigated with this model and compared with two simpler versions, allowing the understanding
of the subtle interplay of steric interactions, propulsion, and phoretic effects. The phoretic Brownian
dynamics method has control parameters which can be tuned to closely map the properties of experiments
or simulations with explicit solvent, in particular those performed with multiparticle collision dynamics.
The combination of the phoretic Brownian method and multiparticle collision dynamics is a powerful tool
to precisely identify the importance of hydrodynamic interactions in systems of self-phoretic swimmers.

1 Introduction

Computer simulation of active matter systems is cur-
rently a topic of intense scientific debate [1-5]. Active
matter considers systems with at least one component
able to draw energy from their environment in order
to self-propel. Activity is an inherent property of most
biological systems and recently a topic of growing inter-
est for the investigation of synthetic active systems,
with practical applications in fields such as microflu-
idics or microsurgery [6,7]. In this line, phoresis is one
of the main physical principles employed for the design
of synthetic active matter. Phoresis refers to the drift
that Brownian particles experience in the presence of
a solvent with an intrinsic gradient, which becomes
self-propulsion when the gradient is locally generated
at the Brownian particle surface. Artificial microswim-
mers with a locomotion based on phoretic effects behave
therefore as passive colloids unless activated via ther-
mal [8-12], electric [13-17], chemical [18,19], or mag-
netic [20-22] gradients.

The collective behavior of chemically propelled Janus
particles showed aggregation behavior [18,23,24], and
light powered micro-robots were observed to form liv-
ing crystals [25-27]. The appearance of clustering and
comet-like swarming structures was predicted by Brow-
nian thermophilic active colloids [28,29]. The system
dimensionality [30,31] and the presence and shape of
hydrodynamic interactions have shown to play a rele-
vant role on the collective behavior of such thermophilic
swimmers [32,33].

Janus-like phoretic particles have already been inves-
tigated by various simulation approaches, although
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not really compared with each other. Some of the
approaches are purely Brownian, and self-phoretic
propulsion is accounted simply by a constant impulse
[28,34,35], or even a constant acceleration in systems
that are supposed to increase their temperature on time
[29]. In the absence of an explicit solvent, phoretic inter-
actions between particles have been considered with an
additional term, which might, or not, be coupled to
the self-propulsion term. Thermal fluctuations are most
frequently considered, and in a few cases also hydrody-
namic interactions which are non-specific and typically
only a far field approximation [36]. However, none of
these methods completely accounts that self-phoretic
Brownian swimmers propel with a well-defined Péclet
number when isolated, while in the neighborhood of
others, their velocity and interparticle interactions need
to adjust to the actual distribution of heat sources.
Different types of approaches consider the presence of
an explicit solvent, such that phoretic effects arise in
the presence of temperature or concentration gradients.
This is the case of simulations performed with molecu-
lar dynamics [37], or dissipative particle dynamics [38],
or with the mesoscopic simulation approach known as
multiparticle collision dynamics (MPC) [11,39]. With
these approaches, the details of self-propulsion, inter-
colloidal phoretic interactions, and hydrodynamic inter-
actions are not directly imposed or tuned, but a conse-
quence of the solvent—colloid interaction, colloid shape,
and solvent intrinsic inhomogeneities. Therefore, in the
studies of collective properties of phoretic active sys-
tems, the effects of steric, phoretic, or hydrodynamic
interactions occur all simultaneously, such that the con-
tribution of each of them is most frequently not possi-
ble to be identified. In this way, the design of strate-
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gies to make them distinguishable is timely and highly
desirable.

Here, we propose a modification of the standard
Brownian simulation method for Janus dimers, in which
the effect of a single phoretic force results into the self-
propulsion of the dimer and interparticle interactions
are included but without any hydrodynamic interac-
tions. We refer to this method as phoretic Brownian
dynamics (Ph-BD). Furthermore, the precise values of
self-propulsion velocity, intensity of the interactions,
and Péclet number can eventually be closely mapped to
those of the MPC simulations to allow for a fair com-
parison of the results obtained with both methods. On
the other hand, we discuss another two simpler Brown-
ian dynamics types of approaches for dimers. One with
only self-propulsion, and another with a constant self-
propulsion and phoretic interaction. An example study
of dense systems of self-thermophilic dimers is here
performed. The comparison of these three Brownian
methods also provides interesting conclusions about the
interplay of phoretic attraction/repulsion, alignment,
and motility-induced instabilities.

2 Phoretic Brownian dynamics (Ph-BD)

Janus particles are characterized by having two dif-
ferent surface compositions. This is also the case of
dumbbell-like structures in which each bead is made
of a different material. For the sake of simplicity, we
focus here mostly in the case of thermophoretic col-
loids, but the procedure is almost equivalent for other
phoretic cases, in particular catalytic or diffusiophoretic
ones. Thermophoretic dimers are made by one bead
which is assumed to be at a higher temperature than
the environment, mimicking a material with high heat
conductivity which can be locally heated. The second
bead is therefore exposed to a significant temperature
gradient and responds to it depending on its intrin-
sic surface properties. In this way, dimers with a ther-
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Fig. 1 Sketches of the propulsion direction of self-phoretic
asymmetric dimers and phoretic interaction between dimer
pairs, which is: a attractive for the case of colloids drifting
up gradient, and b repulsive in the opposite case. ¢ Sketch
of the implemented forces in the Ph-BD model
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mophilic (or chemotatic) behavior propel toward the
hot bead (see Fig. la), while dimers with a thermo-
phobic (or antichemotatic) behavior propel against the
hot bead (see Fig. 1b). The same effect also controls
the interaction between swimmers. Two thermophilic
dimers swimming close to each other fell the tempera-
ture gradient produced not only by their own hot bead,
but also by the hot bead of the neighboring dimer. This
means that thermophilic dimers are attracted to neigh-
boring dimers, while thermophobic dimers are mutu-
ally repelled from neighboring dimers, as depicted in
Fig. 1a,b, which also exerts certain torques on the
dimers. Therefore, in order to model phoretic active
systems in a realistic manner, the effect of propulsion
and interparticle interactions has to be included in a
unified manner. Phoretic effects are related to the tem-
perature gradients which vary locally.

Since the aim here is to describe the motion of col-
loids at low Reynolds numbers, we start by considering
the overdamped Langevin equation [40,41]

. _ Fi(r) 2kpT .
i(t) o +4/ o &i(t) (1)

where F;(r) is the total sum of forces acting on
each particle 4, and §;(t) is a random force with
zero-mean (£(t)) = 0, and delta-correlated Gaussian
(€ (t) - &) = 2vkpT 3(t —t) 6,5 Oy, with k,I =
x,y,zand 7,57 = 1,...,2N; the particles under simula-
tion, with Ny the number of simulated dimeric swim-
mers. The friction coefficient, p;, is considered to ful-
fill the Stokes—Einstein relation, p; = Cymns;, with s;
the radius of the particle ¢, and 7 the fluid viscosity.
The numerical factor C; varies depending on colloid
boundary conditions, and it is typically C; = 6 for
stick and Cy = 4 for slip boundary conditions [42]. The
algorithm here used to integrate the motion equations
was stochastic Euler. In general, the FEuler algorithm
has to be carefully considered due to its low precision
and problems in most isothermal simulations [43,44].
Nonetheless, the precision of this algorithm is sufficient
for the study here performed, and other algorithms can
be easily employed for more extensive investigations.
The details of the interactions are then provided by
the forces, which distinguish two types of particles:

Phoretic : Fy(r;) = Fu i(r;) + Fev,i(r;) + Fr(r;),
(2)
Hot : Fj (I‘j) = FH’J' (I‘j) + FEV,j (rj>7 (3)

with 4,5 = 1,..., Ny for the two beads of each dimer.
The non-heated or phoretic bead is the one where the
temperature gradient has a drift effect, which in this
Ph-BD approach is considered in an effective manner
by including a thermophoretic force Fr (see Fig. 1c).
Meanwhile, the hot bead is considered to be at a higher
but constant temperature, such that does not feel any
thermophoretic force.



Eur. Phys. J. E (2022) 45:25

Pairwise interactions are considered, first the two
beads forming each dimer are linked by a strong har-
monic force Fy, obtained from the potential

Un(ri;) = /%H (rij — b)°, (4)

with the interparticle distance r;; = r; — r;, the har-
monic constant £z = 10%, used to strongly fix the beads
equilibrium distance b as the sum of the beads’ radii,
b = s, + sp, with s, the radius of the phoretic bead
and s;, the radius of the hot bead. The relative dimen-
sions of the dimer beads are defined by the radii aspect
ratio, v = sp/sp. Steric effects are accounted by the
force Fgv j, by which all non-linked beads interact with
excluded volume interactions taken into account with
the potential

Upv(rij) = 4e [(:;)% - (raza)n

where n determines the potential softness, ¢ = kT
relates to standard energy units, with kp the Boltz-
mann constant and T the average temperature, here
both fixed to unity, defining the system units. The extra
term on the right-hand side of the equation determines
the repulsive character of the potential together with
the cutoff radius, r. = 2'/"¢, and we use here n = 24.
The distance o simply relates to the sum of the radius
of the two interacting beads.

The thermophoretic force exerted on the phoretic
bead can be calculated as

+ ¢, (5)

Fri(r;) = —arkpVT(r;) , (6)

where apr is the bead thermodiffusion coefficient and
Vi, T the gradient of temperature at the bead location.
Note that o is a material property, which can be arbi-
trarily modified or chosen to match a value determined
by experiments or by simulations with explicit solvent,
as will be shown later.

The corresponding Laplace equations need to be
solved to obtain a good estimation of the temperature
gradient. We consider here three important and rea-
sonable simplifications, such that the Laplace equation
can be analytically solved: i) Each hot bead center acts
as point-like heat source with temperature 7} at the
bead’s surface; ii) at a distance far enough the fluid
reaches the average fluid temperature T, taken as the
reference unit, i.e., T(r — oo) = T} iil) the effect of
neighboring sources is considered to be additive. For
each point-like source, all angular terms vanish due to
the symmetry of the system such that V2T'(r) = 0, and
the temperature at the center of each phoretic particle
is then given by

T(?ﬂzZ(Th_T)Sh—I—T, (7)

: Tij
J t
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where r;; = |r; — ;| and r; are the hot bead’s center
positions. The expression in Eq. (7) corresponds to the
gradient at the bead center. A more accurate estimation
is to consider an effective value of the temperature gra-
dient that considers the variation over the bead surface,
for which Eq. (7) is integrated along the phoretic bead’s
diameter. For a phoretic bead of radius s,, placed at r;,
and with a hot bead placed at distance r;, the integral
limits are r;; —s, and r;;+s,, such that the temperature
gradient can be approximated by

W)y =3 L= Th)

= (rij +5p)(rij — 5

)Sh . (8)

Note that for an isolated swimmer the gradient is deter-
mined just by the linked hot bead, such that r;; =
Sp + sp, is the only contributing term. For denser sys-
tems, the gradient takes into account the all neighbor-
ing hot heads, such that in the center of highly com-
pact configurations the gradients eventually vanish and
therefore also the thermophoretic force.

The dimer velocity v, and the rotational diffusion
D, are therefore not direct inputs of the model, but
indirectly determined from other input values, mainly
ar, VT, s,, and . The value of the module of v, is
given by

o OéTkB<VT>
ve = (9)

where both the dimer friction p = Cymn(s, + s,) and
the temperature gradient (VT) = (T}, — T)/(sp + 2s;)
depend on the hot and phoretic bead sizes. The axis
direction of the swimmer n aligns with the direction of
the temperature gradient direction considering also the
sign of ap, which determines the direction of vs. The
self-propulsion velocity can also be obtained from the
simulations as vs = v - n. The rotational diffusion D,
depends mostly on the particle size and aspect ratio
v and can be obtained by characterizing the longtime
behavior of the mean-squared angular displacement,
Ae? = ((e(t) —e(t'))?), in simulations with equilibrium
conditions; this is with T}, = T. The resulting Péclet
number can then be defined as Pe = v,/(D;s,).

3 Other active Brownian dimer models

The method proposed in this manuscript, Ph-BD, dif-
fers from other approaches employed in the literature in
the way that phoretic self-propulsion and interparticle
phoretic interactions are coupled to each other. In order
to better understand the relevance of this coupling, we
propose two alternative methods. Self-propelled spher-
ical colloids have been extensively investigated with
the so-called active Brownian particle (ABP) model
[34,45], which simply assumes a constant propulsion
velocity in the particle main axis. The physical origin
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of the propulsion is not specified, such that it could be
phoretic but also any type of biological specificity. We
adapt this idea to the dimeric case by considering Ny
swimmers with two bounded monomers each, where the
hot bead just follows Eq. (3), and the phoretic bead

F,(r;) =Fu,;(r;) + Fev,i(r;) + posn, (10)

where the friction is that of the dimeric structure u =
Cymn(sp + sp) and n is the orientation vector of the
dimer. We here call this method the active Brownian
multimer model (ABM). With this approach, there is
no additional interparticle interactions, such that all
apparent repulsions or attractions are consequence of
the propulsion and/or steric interactions.

The second approach includes also the effect of the
phoretic interaction with a force as given in Eq. (6),
but considering only the heat sources of neighboring
hot beads,

F;(r;) = Fui(r;) + Fev,i(r;) + posn — arkp VT (r;)
(11)

where the temperature gradient can be calculated with
Eq. (7) or Eq. (8). We refer to this method the active
Brownian multimers with phoresis model (ABM+ph).
With this approach, the phoretic interdimer attraction
(or repulsion) is in principle decoupled from the dimer
propulsion since there are two different parameters con-
trol, i.e., vs and ap. There are approaches in which
these, or very strongly related parameters, are indepen-
dently varied [34,35], which cannot really correspond to
a phoretic model since both self-propulsion and inter-
particle phoresis are simultaneously originated. Besides
the fact that vs and ag should be related by Eq. (9)
for thermophoresis, or an equivalent one for other
phoretic phenomena, there is another relevant differ-
ence between Ph-BD and ABM+ph which is that in
ABM-+ph, the velocity of the particles is fixed, namely
it does not depend on the position of the neighbor-
ing particles, while for Ph-BD both the velocity of the
particle and the interparticle interactions are damped
when various other swimmers are in the neighborhood,
as accounted in the temperature gradient calculation.
In order to better understand this effect, we focus here
in the case that v, and ar are linked by Eq. (9).

4 Hydrodynamic self-phoretic model

The methods introduced until now consider steric,
stochastic, and phoretic interactions, which means that
hydrodynamic interactions (HI) have been disregarded.
Although in some cases this can be clearly justified, the
effect of HI is frequently not known. In order to provide
a tool that allows for a fair comparison, we consider now
the method known as multiparticle collision dynamics
(MPC) [11,39]. Multiparticle collision dynamics is here
used to simulate the explicit solvent particles and their
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interactions [46,47], while molecular dynamics (MD) is
employed for colloid—colloid and colloid—solvent inter-
actions. This hybrid MPC-MD approach has already
extensively proved to include both hydrodynamics and
phoretic effects [48-51].

MPC method for the solvent The MPC method
considers the solvent composed of N point particles of
mass m performing alternate streaming and collision
steps. During the streaming step, fluid particles trans-
late ballistically for a certain time, h, the collision time,
this is ri(t + h) = rg(t) + hvi(t). In the collision step,
the particles are binned into cubic cells of side a, with
a grid shift applied to the binning in order to restore
Galilean invariance [52]. Interparticle interactions are
treated within each of these cells, in which particles
interchange linear momentum with all other particles
in the same cell. Here, we employ the stochastic rota-
tional dynamics collision rule, in which the momentum
interchange is made rotating by an angle « the relative
velocities to the center of mass around a random axis on
the cell, v;(t +h) = Vem,i (t) + R() [vi(t) — Vem,i(t)],
with R(a) the rotation matrix, ¢ = 1,..., N the par-
ticle index, and v, the center of mass velocity of
the cell where particle i was sorted, such that linear
momentum and kinetic energy are conserved in each
collision cell. Simulation units are defined by the choice
of a =1 =m = kgT, with which we rescale all quan-
tities in this work. In the simulations here performed,
the fluid properties are determined by the values of the
collision angle a = 120°, the average fluid particles per
cell p =10, and the collision time, h = 0.1. With these
choices, the solvent diffusion coefficient is D = 0.06, the
kinematic viscosity v = 0.79, and the thermal diffusiv-
ity K = 0.15 [53-56]. The comparison with specific sol-
vents can be done via dimensionless numbers, mainly
the Schmidt number, Sc = v/D = 13, and the Prandtl
number, Pr = v/kp = 5.3. While Sc is smaller than the
value for water, Pr is quite close to it. These two val-
ues ensure that momentum transfer is faster than that
of mass, providing an efficient way to include hydrody-
namic interactions, and that the stability of local tem-
perature gradients is also ensured.

Molecular dynamics Fluid—colloid interactions are
considered using molecular dynamics, with the equa-
tions of motion being integrated using the velocity Ver-
let algorithm [43,44,57]. The thermophoretic nature of
the colloids is determined by the choice of the fluid—
colloid interactions, for which we used a displaced Mie-
like potential,

Urc(r) = 4e [(TUA)Q" B (TUA>n

This potential is very similar to that in Eq. (5) with the
introduction of the A and the C' parameters. The bead
size is now determined by s = o + A, where A can
be understood as the size of a core with hard-sphere
interactions and o the size of an additional layer with
repulsive potential interactions. In this work, we use

+C (12)
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o = A and s, = 6 for the size of the phoretic bead.
The extra term on the right-hand side of Eq. (12) is
C = ¢ for repulsive interactions, which have proved to
account for thermophilic colloidal behavior, and C' = 0
for attractive interactions for thermophobic [58,59]. For
these interactions, n = 3 is chosen to obtain a soft repul-
sive potential for the phoretic (philic) bead, whereas
n = 24 is chosen for the heated particle and also for the
attractive potential (phobic). The cutoff radius of the
interactions is r, = 1.260 + A for the repulsive poten-
tial and r. = 1.10 + A for the attractive. Harmonic and
excluded volume interactions are considered similarly as
for the Ph-BD case with Eq. (4) and Eq. (5). In order
to mimic the heating produced by laser illumination of
partially gold-coated colloids [60], we have rescaled the
temperature of the fluid within a small shell (of 0.08s,)
around the heated bead to 7}, > T, while cooling the
average temperature of the whole system to T' = 1, by
means of a simple velocity rescale [55,60]. Unless oth-
erwise specified, we use 7 = 1.5. All colloid—colloid
interactions have been implemented via Eq. (5); this is
Eq. (12), with A = 0, 0 = s and n = 24, with the
interactions being cut at r, = 2'/%4¢.

This method has been implemented on LAMMPS
[61], where we have modified the “srd” package rou-
tine [62] to include the colloid—solvent potential inter-
actions. The MD time step has been chosen as At =
0.01h, similar as in the Brownian simulations, and the
mass M of the colloidal beads is chosen to make the
colloids neutrally buoyant.

Parameters for the comparison MPC vs. Ph-BD
In order to perform a fair comparison of the meth-
ods with and without HI, we are interested in having
systems as similar as possible. Some values are input
parameters in the Brownian dynamics simulations and
therefore very easy to match, such as the average tem-
perature kT = 1, or the fluid viscosity n = vp = 7.9.
The numerical factor Cy for the friction coefficient is
fixed as Cy = 3 in order to match the employed MPC-
SRD algorithm without angular momentum conserva-
tion and slip boundary conditions [63,64]. Other param-
eters are not direct input and need to be more carefully
considered. For a proper comparison, it is of impor-
tance that parameters chosen for the two simulations
models result in matching self-propulsion velocity and
the Péclet number of diluted swimmer dimers systems.
For this, we need to characterize the simulated ther-
mophoretic coefficient ar and rotational diffusion D,..

The thermophoretic coefficient aer of a spherical bead
could in principle be determined in full hydrodynamic
simulations with an external temperature gradient [58].
This would be, however, a too rough estimation, first
because the constant and position-dependent gradients
are different, and second because it is known that the
proximity of the hot bead screens part of the phoretic
interactions of the surrounding solvent and the colloid
surface. A more adequate estimation can be done by
measuring the self-propelled velocity of a single swim-
mer with Eq. (9) and relating it then to the ther-
mophoretic coefficient ap. Figure 2 shows simulation
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Fig. 2 Self-propulsion velocity vs of single dimers simu-
lated with MPC as a function of the temperature gradient
(VT) felt by the phoretic bead, for various dimer types.
Results for dimers with phoretic bead s, = 6. Circles (in
blue) correspond to thermophobic dimers; triangles (in red)
correspond to thermophilic dimers. Full symbols correspond
to asymmetric dimers (7 = 3); empty symbols to symmetric
dimers (v = 1). Lines relate to linear fits to Eq. (9) for small
gradients

results for four types of dimeric swimmers, correspond-
ing to thermophobic and thermophilic character, and
to the symmetric (y = 1) and asymmetric (y = 3)
geometries. Velocities are calculated as an average of
20 independent simulations, and the error bars are of
the order of the symbol size. Simulations are performed
at various temperature gradients, which are achieved
by changing the temperature of the hot bead T}. The
increase in the velocity is clearly linear for moderate
gradients, which allows us to determine the value of
the thermophoretic coefficient for all the investigated
cases as shown in Table 1. For the largest temperature
gradients, the velocities deviate from the linear behav-
ior. This deviation from the Fourier linear behavior can
be expected and here can also be related to the limit of
the method for these temperature gradients. Note that
the negative sign of ar is well established by convention
and it refers the motion of the swimmer toward the heat
source. The sign of this coefficient naturally induces the
interdimer phoretic attraction for thermophilic dimers,
and phoretic repulsion for thermophobic ones, as shown
in Fig. 1a, b, such that no further assumption has to
be made in this regard.

To perform simulations with Ph-BD and MPC of
dimers with the same bead sizes, the same solvent input
parameters, and the same ap seems then a good strat-
egy to have a fair comparison between methods, only
the Péclet number is left to be discussed. The val-
ues of D, for the specified values result to be close
to 60% larger in the Ph-BD simulations than in those
performed with MPC, for all the four investigated
cases (sce Fig. 3a for the case sb?/sh" = 1). This is
because the rotational diffusion is not a parameter fixed
in any of the two methods but a consequence of all
the other parameters, such as friction, particle size,
thermophoretic coefficient, or fluid particle interactions
which are different in both methods. In order to mod-
ify the rotational diffusion coefficient without affecting
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Table 1 Thermophoretic coefficient ar of single ther-
mophilic and thermophobic self-propelled dimers, with dif-
ferent aspect ratios v = s, /sy, as obtained from MPC sim-
ulations. Values are obtained as a fit to the data in Fig. 2 to
the expression in Eq. (9) for small temperature gradients.
Values of the self-propelled velocity vs and rotation diffusion
coefficient D, and Péclet number Pe calculated as explained
in the text

Phobic Philic
7=3 r=1 7=3 r=1
ar 345 725 —213 —418
vs (x10?) 1.95 2.20 1.27 1.28
D, (x10%) 9.06 2.04 9.2 1.9
Pe 36 180 23 112
a
N 15'* @
Q
=10 'S
Q
0.5} s 2, ]
. . . L
1.5} (b)l
Ebm r'y
.‘;:\ 1‘0 - -
0.5} T
(c) i
5@ 3t J
& *
& é 4 &
t
4
1.2

14 1.6 1.8 2.0
sgd/sgi

1.0

Fig. 3 Dynamical quantities measured with single-dimer
Ph-BD simulations as a function of the phoretic bead size
and normalized by the values of the hydrodynamic simula-
tions. a Rotational diffusion coefficient D,., b self-propulsion
velocity vs, ¢ resulting Péclet number Pe. All quantities are
normalized by the reference values obtained for hydrody-
namic simulations with s;,” = 6, in Table 1. The dashed
lines at unity indicate perfect agreement between Ph-BD
and MPC simulations. Thick vertical gray line corresponds
to the case with optimal agreement for both vs and Pe,
which occurs for sf,d =8

other characteristic values, it is possible to vary the
overall bead sizes. Further simulations in equilibrium
with dimers with different s, (and different s to pre-
serve ) are performed, and the measured values of D,
are shown in Fig. 3a. As expected, the results show a
decay of D, for growing particle sizes, which is pro-
duced just by the thermal noise in the position update
of the two linked dimer monomers. Using a different
monomer size allows then the tuning of the rotational
diffusion, but, for simulations out of equilibrium with
a fixed value of T}, also modifies the temperature gra-
dient at the phoretic monomer surface and therefore
also the resulting self-propelled velocity. The solution
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to keep the same v, value is then to modify 7}, to keep
the gradient constant when changing the monomer size.
As a check of this principle, we perform simulations
modifying both s, and T} for a given gradient and
then measure the self-propelled velocity. The results
are shown in Fig. 3b in comparison with those of the
self-propelled velocity of the hydrodynamic simulations
used here as an input, and the agreement is very good
within the error of the measurements in all cases. Note
that in order to keep the same vg value, to modify T},
is equivalent to modify a7 since it is the product of
both which determines Frr and v, as shown in Eq. (6)
and Eq. (9), respectively. The resulting Péclet number
shown in Fig. 3c results in a growing trend with particle
size, which is related to the variation in the rotational
diffusion. From Fig. 3, it is also clear that the optimal
value is given by Brownian simulations with s, = 8,
such that all presented Brownian simulations are from
now on carried with this value.

5 Comparative study for collective
dynamics

In order to perform a comparative study of the Brown-
ian methods, simulations of dimeric thermophilic swim-
mers are performed first with the three Brownian meth-
ods previously discussed. Ensembles of 200 dimers both
asymmetric, v = 3, and symmetric, v = 1, have been
studied for a quasi-2d confinement case. In principle,
this refers to 3d slides of liquid in which the swimmers
move on a plane, which for the Brownian dynamics sim-
ulations means that the motion occurs in two dimen-
sions.

The configuration used to initialize the simulation
has the dimers center of mass placed on a square lattice
covering almost the whole simulation box, with a ran-
domly chosen direction of the dimer axis. Initial order
disappears very quickly in all cases. All simulations run
for a time t ~ 3007y, with 73, the ballistic time of a swim-
mer, defined as 7, = s,/vs, and representative snap-
shots of the latest configurations are shown in Fig. 4.
Asymmetric dimers propel forming small clusters; some
of these clusters dissolve due to collisions with isolated
dimers or pairs of dimers, and some other coalesce with
other small cluster, forming larger and more stable clus-
ters, as can be seen in Fig. 4a. Symmetric dimers show
initially similar dynamics, although interestingly the
large clusters do not become stable and also end up dis-
solving in this case, as can be seen due to the small-sized
clusters in Fig. 4b. Snapshots in Fig. 4 correspond to
simulations performed with the Ph-BD method; qual-
itative roughly similar results are also obtained with
ABM and ABM+ph methods. In order to more pre-
cisely understand the involved mechanisms and the dif-
ference between the methods, the quantification of a
dynamic quantity is employed.

We introduce here the calculation of bounding time
T. for both asymmetric and symmetric dimers at two
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Fig. 4 Snapshots of ensembles of 200 self-thermophilic
swimmers at times around 3007 for density ¢ = 0.2 simu-
lated with the Ph-BD method. a Asymmetric dimers (y =
3), showing a few large stable clusters; b symmetric dimers
(y =1), showing a number of small transient clusters

density values. This bounding time is defined as the
average time that encounters of dimers pairs remain
at maximum colloid surface to colloid surface distance
0.75s, of each other. This bounding time is obtained
as a time average and as an average over five indepen-
dent simulations. In this way, particles forming unsta-
ble clusters have a well-defined average bounding time
that might be longer or shorter depending on the clus-
ter instability. Particles inside a stable cluster have a
theoretically infinite bounding time, which in our mea-
surements shows as a quantity growing with the simu-
lation time.

Page 70of 9 25

' (a) B
30T — puBD
== ABM-+ph e
€ 9ol """ ABM ]
D Ll ;
\l\i --------
107
7=3
0r,
QF
6_
<
=
£ o4t
2_
0 100 200 300
t/Tb

Fig. 5 Bounding time 7. calculated as a time average and
shown here as a function of simulation time normalized with
the dimer ballistic times 7,. Results for simulations with
the three Brownian dynamics methods for 200 thermophilic
dimers distinguished by the inset labels. Results at densities
¢ = 0.2 are shown with light colors, while results with ¢ =
0.3 are displayed with darker colors. a Asymmetric dimers
and b symmetric dimers

The bounding times of asymmetric dimers in Fig. 5a
show to form stable clusters at both densities in simula-
tions with phoretic attraction; this is with Ph-BD and
ABM+ph simulations. Simulations without phoretic
interparticle attraction show to saturate to a constant
value, which curiously is the same for both simulated
densities. This means that for these asymmetric dimers
at these densities, self-propulsion is not enough to sta-
bilize the clusters, and the consideration of the cor-
responding phoretic attraction stabilizes the clusters.
The bounding times are slightly smaller for ABM+ph
with respect to Ph-BD. Although the difference is not
large, it indicates that diminishing the propulsion veloc-
ity of the dimers inside the cluster slightly increases its
cohesion. The bounding times of symmetric dimers in
Fig. 5b show that all three Brownian methods form
just unstable clusters; several interesting conclusions
can still be drawn from these results. The first one
relates to the effect of density, which shows to increase
the bounding time in all cases, although with different
intensity. Density increases the probability of encoun-
ters which has two opposite effects since it enhances
both clustering formation and its dissolution. For the
symmetric dimers without phoresis (ABM), the effect
is small but clear at not too small times. This is in con-
trast to the asymmetric case for which the difference is
much smaller and even seem to disappear for large aver-
aging times. We relate this difference to the particle-
induced alignment when two dimers collide, effect that
is much larger for symmetric dimers. Another clear con-
clusion is that Ph-BD enhances stability with respect
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to ABM+ph and that this effect increases with den-
sity. This is again related to the fact that the smaller
propulsion velocity of the dimers inside a cluster for
the Ph-BD cases increases their stability. The effect is
though not straightforward to predict since it is not
shown to be much larger for asymmetric dimer swim-
mers where the formed clusters are larger, than in the
case of symmetric dimers where only small clusters
would be affected. Curious is also the difference between
ABM and ABM+-ph for the symmetric dimers. The col-
lective simulations here presented only analyze the ther-
mophilic case, such the inclusion of phoresis includes
an interparticle attraction, expected to translate into
larger clustering affinity. This is indeed the case for
the asymmetric dimers, but not for the case of sym-
metric dimers. Phoretic attraction combined with the
non-adjusting self-propulsion velocity seems to induce
additional alignment of the symmetric dimers, such
that they became more prompted to swim away from
the small nucleated clusters, producing this somehow
counterintuitive effect. In other words, the fact that
ABM dimers do not significantly change their orien-
tation when colliding with others makes that in some
cases they get stuck in configurations longer than in the
presence of attraction, providing such structures with
additional stability. For the ¢ = 0.3 symmetric density
case, the ABM simulations have almost the same stabil-
ity properties as those with Ph-BD, while for ¢ = 0.2,
ABM simulations are even more stable than those with
Ph-BD, where both self-propelled velocity and attrac-
tion diminish in the neighborhood of other dimers.
Simulations in the collective regime with the hydro-
dynamics phoretic model MPC are also performed in
the previously discussed regimes. The most relevant
conclusion is the occurrence of qualitative differences
with the systems here presented, which, due to the fair
comparison that these methods provide, can be related
just to hydrodynamics. Detailed understanding of such
results requires a detailed discussion of the shape of the
hydrodynamic fields which will be presented elsewhere.

6 Summary and discussion

The Ph-BD method to perform Brownian dynamics
simulations with a realistic inclusion of the phoretic
self-propulsion and interactions is here presented. The
main idea is that simply considering the well-known
dependence of the phoretic force with the applied gradi-
ent properly couples the self-propelled velocity and the
interaction between two or more particles. The Ph-BD
method is here compared with other two simpler ver-
sions of BD simulations, which draws interesting con-
clusions illustrating the very subtle interplay of self-
propulsion, phoretic-induced attraction, repulsion, or
orientation. Depending on the particle geometry, prop-
erties, and overall densities, these effects show that they
can act together, or against each other. We also show
in detail how the Ph-BD method can be adjusted to
map the properties of experimental systems or sim-
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ulations with explicit solvent, as illustrated here for
MPC simulations. The combination of MPC and Ph-
BD simulations offers therefore the possibility to com-
pare simulated systems which only differ in the inclu-
sion of solvent-mediated interactions, which is a very
powerful tool to understand the effect of hydrodynamic
interactions. These methods are here used to investi-
gate the properties of thermophoretic dimers, but it can
be almost trivially extended to other phoretic effects
such as diffusiophoresis, and also to other multimeric
structures such as trimers or other oligomeric swim-
mers. Preliminary analysis indicates that it can also be
extended to Janus spherical particles. The presented
results for the collective dynamics of thermophoretic
swimmers also indicate that these are the basis of syn-
thetic active materials with various perspectives for
applied materials.
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