000910533 001__ 910533
000910533 005__ 20230123110708.0
000910533 0247_ $$2doi$$a10.1103/PhysRevA.105.062406
000910533 0247_ $$2ISSN$$a2469-9926
000910533 0247_ $$2ISSN$$a2469-9942
000910533 0247_ $$2ISSN$$a0556-2791
000910533 0247_ $$2ISSN$$a1050-2947
000910533 0247_ $$2ISSN$$a1094-1622
000910533 0247_ $$2ISSN$$a1538-4446
000910533 0247_ $$2ISSN$$a2469-9934
000910533 0247_ $$2Handle$$a2128/32201
000910533 0247_ $$2WOS$$aWOS:000809499800011
000910533 037__ $$aFZJ-2022-03915
000910533 082__ $$a530
000910533 1001_ $$0P:(DE-Juel1)176997$$aMehta, Vrinda$$b0
000910533 245__ $$aQuantum annealing for hard 2-satisfiability problems: Distribution and scaling of minimum energy gap and success probability
000910533 260__ $$aWoodbury, NY$$bInst.$$c2022
000910533 3367_ $$2DRIVER$$aarticle
000910533 3367_ $$2DataCite$$aOutput Types/Journal article
000910533 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1666957192_8013
000910533 3367_ $$2BibTeX$$aARTICLE
000910533 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910533 3367_ $$00$$2EndNote$$aJournal Article
000910533 520__ $$aIn recent years, quantum annealing has gained the status of being a promising candidate for solving various optimization problems. Using a set of hard 2-satisfiability (2-SAT) problems, consisting of problems of up to 18 variables, we analyze the scaling complexity of the quantum annealing algorithm and study the distributions of the minimum energy gap and the success probability. We extend the analysis of the standard quantum annealing Hamiltonian by introducing an additional term, the trigger Hamiltonian, which can be of two types: ferromagnetic and antiferromagnetic. We use these trigger Hamiltonians to study their influence on the success probability for solving the selected 2-SAT problems. We find that although the scaling of the runtime is exponential for the standard and modified quantum annealing Hamiltonians, the scaling constant in the case of adding the trigger Hamiltonians can be significantly smaller. Furthermore, certain choices for the trigger Hamiltonian and annealing times can result in a better scaling than that for simulated annealing. Finally, we also use the quantum annealers of D-Wave Systems Inc. to study their performance in solving the 2-SAT problems and compare it with the simulation results.
000910533 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000910533 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910533 7001_ $$0P:(DE-Juel1)144355$$aJin, Fengping$$b1
000910533 7001_ $$0P:(DE-Juel1)179169$$aDe Raedt, Hans$$b2$$ufzj
000910533 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b3$$eCorresponding author
000910533 773__ $$0PERI:(DE-600)2844156-4$$a10.1103/PhysRevA.105.062406$$gVol. 105, no. 6, p. 062406$$n6$$p062406$$tPhysical review / A$$v105$$x2469-9926$$y2022
000910533 8564_ $$uhttps://juser.fz-juelich.de/record/910533/files/PhysRevA.105.062406-1.pdf$$yOpenAccess
000910533 909CO $$ooai:juser.fz-juelich.de:910533$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000910533 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176997$$aForschungszentrum Jülich$$b0$$kFZJ
000910533 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144355$$aForschungszentrum Jülich$$b1$$kFZJ
000910533 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179169$$aForschungszentrum Jülich$$b2$$kFZJ
000910533 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b3$$kFZJ
000910533 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000910533 9141_ $$y2022
000910533 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000910533 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-05-04
000910533 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000910533 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000910533 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910533 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-23
000910533 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-23
000910533 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-23
000910533 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-23
000910533 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-23
000910533 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-23
000910533 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer Review$$bASC$$d2022-11-23
000910533 920__ $$lyes
000910533 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000910533 980__ $$ajournal
000910533 980__ $$aVDB
000910533 980__ $$aUNRESTRICTED
000910533 980__ $$aI:(DE-Juel1)JSC-20090406
000910533 9801_ $$aFullTexts