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In recent years, quantum annealing has gained the status of being a promising candidate for solving various
optimization problems. Using a set of hard 2-satisfiability (2-SAT) problems, consisting of problems of up to 18
variables, we analyze the scaling complexity of the quantum annealing algorithm and study the distributions
of the minimum energy gap and the success probability. We extend the analysis of the standard quantum
annealing Hamiltonian by introducing an additional term, the trigger Hamiltonian, which can be of two types:
ferromagnetic and antiferromagnetic. We use these trigger Hamiltonians to study their influence on the success
probability for solving the selected 2-SAT problems. We find that although the scaling of the runtime is
exponential for the standard and modified quantum annealing Hamiltonians, the scaling constant in the case
of adding the trigger Hamiltonians can be significantly smaller. Furthermore, certain choices for the trigger
Hamiltonian and annealing times can result in a better scaling than that for simulated annealing. Finally, we also
use the quantum annealers of D-Wave Systems Inc. to study their performance in solving the 2-SAT problems
and compare it with the simulation results.
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I. INTRODUCTION

Quantum annealing is a metaheuristic for solving combi-
natorial optimization problems, which requires mapping the
problem to the Ising Hamiltonian. The ground state of this
so-called problem Hamiltonian encodes the solution to the
optimization problem, and therefore the task of finding the so-
lution to the optimization problem is equivalent to finding the
ground state of the problem Hamiltonian. Similar to simulated
annealing [1], where the search for the ground state is assisted
by adding thermal fluctuations, quantum annealing makes use
of quantum fluctuations so that quantum tunneling can facili-
tate the search for the lowest-energy configuration [2–4].

The idea of employing adiabatic quantum annealing to
realize a quantum computer devoted to solving optimization
problems emerged in the early 2000s [5,6]. However, the
notion of quantum annealing has a wider scope than adia-
batic quantum computing as it also allows for nonadiabatic
transitions during the evolution [7–9]. A similar algorithm
that has been developed for the gate-based model of quantum
computing is the quantum approximate optimization algo-
rithm [10–14].

Since its conception, there has been extensive research
to evaluate the efficiency of quantum annealing in solving
optimization problems [15–25]. Moreover, the availability of
commercial quantum annealers of D-Wave, which offers an-
nealing systems with more than 5000 qubits [26], has given
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the impetus for research in this direction [14,27–39]. Much
of the work has focused on investigating whether quantum
annealing can deliver a speedup over the existing classical
algorithms [20,33,40]. A related area of interest is to assess
the performance of quantum annealing by studying the scaling
of the computation time required to solve the optimization
problem as a function of the problem size and comparing it
to the scaling of certain chosen classical algorithms [31,33,
40–45].

In this work we numerically investigate the scaling
complexity of quantum annealing for solving 13 sets of 2-
satisfiability (2-SAT) problems, with the size of the problems
varying from 6 to 18 variables [46]. These problems have a
known ground state and have been specially designed to be
hard to solve using simulated annealing [43,46]. Therefore,
such an analysis allows us to gauge the suitability of quantum
annealing for solving them.

In the case of adiabatic quantum annealing, the minimum
energy gap between the ground state and the first excited
state of the Hamiltonian is a pivotal quantity for determining
the computation time required to obtain the solution for the
optimization problem [47]. Hence, we look at the scaling of
the minimum energy gaps to understand how the resources
required to solve these problems using quantum annealing
grow as the problem size increases. For a comparison with
the predictions of the adiabatic theorem, we also determine
the scaling of the time to solution T99, which is the runtime
required to obtain the ground state of the problem Hamiltonian
at least once, in multiple runs of the algorithm, with 99%
certainty.
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Next, to examine how modifications to the standard algo-
rithm affect these scalings, we add a third term [9,22,48–52],
the trigger Hamiltonian, to the standard algorithm for quan-
tum annealing, which vanishes at the beginning and end of the
annealing process. Furthermore, the trigger Hamiltonian can
be of two types, the ferromagnetic trigger Hamiltonian and
the antiferromagnetic trigger Hamiltonian [9,52]. Previous
findings have indicated that while the inclusion of the ferro-
magnetic trigger Hamiltonian mostly enlarges the minimum
energy gaps, therefore promoting the chances of an adiabatic
evolution, adding the antiferromagnetic trigger Hamiltonian
can either increase or decrease the size of the minimum energy
gaps [9,52]. In addition, it can also modify the energy spec-
trum of the quantum annealing Hamiltonian significantly, for
example, by increasing the number of anticrossings between
the ground state and the first excited state of the Hamiltonian
or by altering the shape of the anticrossing, giving way to
some interesting nonadiabatic mechanisms that control the
evolution of the state of the system [52]. Thus, a study of the
scaling of the minimum energy gaps and T99 with the addition
of the trigger Hamiltonians facilitates a direct comparison
between the adiabatic quantum annealing and the quantum
annealing algorithm allowing for nonadiabatic mechanisms.

Finally, we also use the solvers offered by D-Wave to study
the scaling of the T99 on these systems. Although susceptible
to noise and temperature effects, these systems provide the
hardware for the largest quantum annealer. A comparison of
the results obtained with these systems with the simulation
results can give insight into how close these systems are to
an ideal quantum annealer, as well as the dominant effects
playing a role during the evolution of the state of the system.

We analyze the distribution of the minimum energy gap
between the ground state and the first excited state of the
quantum annealing Hamiltonian, and the success probability,
as well as the scaling behavior of the minimum energy gap and
the T99. We obtain three distinct distributions for the minimum
energy gaps. In the adiabatic limit, these distributions can
be extrapolated to the distribution of the success probability
using the Landau-Zener theory. For certain distributions of
the minimum energy gaps, the resulting distribution for the
success probability is predicted to be constant. The simulation
results for the success probability distribution are found to be
of three kinds: bimodal, unimodal, and constant. Interestingly,
the corresponding results obtained with the D-Wave annealers
also show these three distributions. The scaling of the mini-
mum energy gaps and the T99 in the adiabatic regime is found
to be exponential in the asymptotic limit. Furthermore, we
find that in the adiabatic limit, the standard quantum annealing
Hamiltonian results in a worse scaling of the T99 than a brute-
force search. Nevertheless, the quantum annealing algorithm
with an antiferromagnetic trigger Hamiltonian for short an-
nealing times and the new generation of the D-Wave systems
result in a better scaling than that obtained by solving these
problems using simulated annealing.

The paper is organized as follows. Section II gives a brief
review of the theoretical aspects of quantum annealing and
related concepts. In Sec. III we describe the 2-SAT problems
that have been used for this study and briefly explain the
methods used to obtain and analyze the results. Section IV
discusses the results obtained from simulations, while in

Sec. V we show the results obtained with the D-Wave systems.
Finally, we summarize our observations in Sec. VI.

II. THEORETICAL BACKGROUND

This section aims at equipping the readers with the theoret-
ical background necessary to understand the important aspects
of, or related to, quantum annealing such as the recipe for the
algorithm, the adiabatic theorem, the Landau-Zener formula,
and the modifications to the standard algorithm for quantum
annealing.

A. Quantum annealing and the adiabatic theorem

To employ quantum annealing to solve an optimization
problem, we start the algorithm in the easy-to-prepare ground
state of an initial Hamiltonian HI . The system is then slowly
swept towards the problem Hamiltonian HP, which encodes
the solution of the optimization problem in its ground state
by means of the annealing parameter s, defined as s = t/TA,
where TA is the annealing time. The time-dependent Hamilto-
nian has the form

H (s) = A(s)HI + B(s)HP, (1)

where the functions A(s) and B(s) control the annealing
scheme such that A(0)/B(0) � 1 and A(1)/B(1) � 1. For
simplicity in our simulations, we choose the annealing scheme
to be linear, i.e., A(s) = 1 − s and B(s) = s. Frequently, the
initial Hamiltonian is chosen to be

HI = −
N∑

i=1

hx
i σ

x
i , (2)

while the problem Hamiltonian is of the Ising type,

HP = −
N∑

i=1

hz
i σ

z
i −

∑
〈i, j〉

Jz
i, jσ

z
i σ z

j , (3)

where σ x
i and σ z

i are the Pauli matrices, hx
i and hz

i are the
applied fields acting along the x and z directions, respectively,
Jz

i, j is the coupling between the ith and jth spins, and 〈i, j〉
denotes the set of coupled spins; hx

i is generally chosen to
be 1.

The dynamics of the system described by this Hamilto-
nian is governed by the time-dependent Schrödinger equa-
tion (TDSE). Hence, the task of finding the solution of the
optimization problem is equivalent to solving the TDSE

i
∂ |ψ〉
∂t

= H (t ) |ψ〉 , (4)

where we have set h̄ = 1. We use dimensionless quantities in
our simulations.

The adiabatic theorem states that if the sweeping from the
initial to the problem Hamiltonian is done slowly enough dur-
ing the annealing, the system stays in the same instantaneous
energy eigenstate as that in which the algorithm starts [47,53–
55]. Therefore, if one starts in the ground state of the initial
Hamiltonian, one reaches the state encoding the solution of
the optimization problem at the end of the algorithm. This
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requires [47]

TA � max
0�s�1

∥∥ 〈1(s)| dH
ds |0(s)〉 ∥∥

�(s)2
, (5)

where |0(s)〉 and |1(s)〉 are the ground state and first excited
state of the instantaneous Hamiltonian, respectively, and �(s)
is the energy gap between them.

As can be seen from Eq. (5), the annealing time required
to reach the ground state of the problem Hamiltonian adia-
batically depends crucially on the minimum energy gap �min

between the ground state and the first excited state of the
Hamiltonian, i.e., � = min0�s�1 �(s). A Hamiltonian with a
small minimum energy gap requires a long annealing time to
keep the state of the system in the instantaneous ground state.

B. Landau-Zener theory

A test for gauging the performance of quantum annealing
is to determine the probability of the final state being the re-
quired solution of the encoded problem with a given minimum
energy gap and for a chosen annealing time. This probability
will henceforth be referred to as the success probability.

The Landau-Zener theory describes the response of a two-
level system under the action of a varying external magnetic
field [56–58]. Considering a spin-1/2 particle in a time-
dependent magnetic field h(t ) = ct , where c is the rate of
sweep and t varies from −∞ to ∞, the Hamiltonian for the
system is given by

H = −�σ x
i − h(t )σ z

i , (6)

where � sets the scale of the energy splitting between the two
levels [58]. When t is large and negative and |h(t )| � �, the
spin-down state is the ground state of the Hamiltonian, while
for large and positive t , the spin-up state is the ground state of
the Hamiltonian. According to the Landau-Zener theory, the
success probability after the sweep is

p = 1 − exp

(−π�2
min

4c

)
, (7)

where �min = 2� is the minimum energy gap between the two
levels and c = dh/dt . Although in this work we deal with sys-
tems which are more complex than a simple two-level system,
if the chosen annealing time is sufficiently long, the system
can be well approximated by a two-level system. Hence, the
Landau-Zener formula can still be employed to determine the
probability of an adiabatic evolution for such systems.

C. Addition of the trigger Hamiltonian

In order to investigate how introducing modifications to the
standard algorithm for quantum annealing can affect its per-
formance, we add a third term [9,52], the trigger Hamiltonian
HT , to the standard algorithm for quantum annealing. This
term should vanish at the beginning and end of the annealing
process so that the ground states of the initial Hamiltonian
and problem Hamiltonian remain unaffected. Upon choosing
a linear annealing scheme, we obtain

H (s) = (1 − s)HI + s(1 − s)HT + sHP. (8)

We have chosen the trigger Hamiltonian to have the same
connectivity graph as that of the problem Hamiltonian, i.e.,

HT = −
∑
〈i, j〉

Jx
i, jσ

x
i σ x

j . (9)

Furthermore, the trigger Hamiltonian can be of two types,
the ferromagnetic trigger Hamiltonian, with Jx

i, j = 1, and the
antiferromagnetic trigger Hamiltonian with Jx

i, j = −1.

III. PROBLEMS AND METHODS

In this section we describe the set of problems that we
want to solve using quantum annealing. Next we explain the
methods used to obtain both numerical and D-Wave results as
well as the criteria that will be employed for the interpretation
of these results.

A. 2-SAT problems

In this work we want to use quantum annealing to solve
problems that are hard to solve with classical algorithms like
simulated annealing. To accomplish this task, we construct
sets of 2-SAT problems with varying problem size, with each
problem having a unique satisfying assignment (selected us-
ing the brute-force search method). Moreover, the degeneracy
of the first excited state grows exponentially as the size of the
problems increases [43]. Such properties make these problems
difficult to solve using simulated annealing.

A 2-SAT problem consists of a cost function F , involving
N binary variables xi = 0, 1 and a conjunction of M clauses
such that

F = (L1,1 ∨ L1,2) ∧ (L2,1 ∨ L2,2) ∧ · · · ∧ (LM,1 ∨ LM,2),

(10)

where Lα, j , with α = 1, . . . , M and j = 1, 2, is a variable xi

or its negation xi. A problem is considered to be satisfiable if
one can find an assignment to the xi’s which makes the cost
function true. The problem of finding a satisfying assignment
to the cost function is equivalent to finding the ground state of
the Hamiltonian

H2-SAT =
M∑

α=1

h2-SAT(εα,1si(α,1), εα,2si(α,2)), (11)

constructed from a combination of the clauses of the 2-SAT
problems, where h2-SAT(sl , sm) = (sl − 1)(sm − 1) and i(α, j)
maps the jth literal from the αth clause to the index i of
variable xi for α = 1, . . . , M, j = 1, 2, and i = 1, . . . , N .
The variable εα, j = 1 if Lα, j = xi, while εα, j = −1 if Lα, j =
xi [43,46]. These spins are further replaced by the quantum
spin operator σ z

i for using quantum annealing to find the
minimum-energy state of the Hamiltonian.

We present results for 13 sets of 2-SAT problems, each
corresponding to an N , with N ranging from 6 to 18, and
M = N + 1. The sets corresponding to small N (N < 10) have
100 problems each, while larger sets have 1000 problems for
each N . However, it was observed that some problems had
the same graph as another problem belonging to the set, and
therefore such redundancies have been removed from every
set. As a result, the sets corresponding to N < 10 have more
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than 70 problems each, while the sets with N � 10 have more
than 900 problems, except for sets with N = 15 and 18, which
have 557 and 789 problems, respectively.

B. Analysis of numerical results

Focusing now on the numerical analysis of our study,
this section describes three observables that are used as a
basis for determining the complexity of quantum annealing
for solving our problems in Sec. IV. We perform this anal-
ysis for three quantum annealing algorithms, i.e., using the
Hamiltonian given by Eq. (1), the one given by Eq. (8) with
the ferromagnetic trigger Hamiltonian, and that given by the
Hamiltonian (8) with the antiferromagnetic trigger Hamil-
tonian. We use the three quantum annealing algorithms to
solve 13 sets of 2-SAT problems, each corresponding to a
different N .

1. Minimum energy gaps

In the adiabatic theorem [Eq. (5)] and the Landau-Zener
formula [Eq. (7)], the minimum energy gap is a decisive quan-
tity for determining the performance of quantum annealing in
the adiabatic regime. We employ the Lanczos algorithm [59]
to obtain the energy spectra of the problem Hamiltonians.
We investigate two aspects of the minimum energy gap: its
distribution for a fixed problem size and its scaling as a func-
tion of the problem size. We use the distribution functions
given in Appendix A to fit the obtained minimum energy gap
distributions.

In order to inspect the scaling, we calculate the deciles for
the minimum energy gaps for each quantum annealing Hamil-
tonian, given by Eq. (1) or (8) (using the ferromagnetic or the
antiferromagnetic trigger Hamiltonian), with N ranging from
6 to 18. The problems which have a minimum energy gap
smaller than the first decile D1 represent the hardest problems
of the set, while the problems with a larger minimum energy
gap than the ninth decile D9 represent the easiest problems of
the set. We obtain the scaling of the minimum energy gaps by
fitting suitable functions to the deciles in the asymptotic limit.

According to the adiabatic theorem [Eq. (5)], this analysis
can be extrapolated to provide an estimate for the annealing
time required to ensure an adiabatic evolution of the state of
the system for a given minimum energy gap. According to the
theorem, this annealing time is inversely proportional to �2

min,

TA ∝ 1

�2
min

. (12)

If the correlation length ξ = 1/�min increases exponentially
as a function of the problem size, then the runtime required
to keep the evolution adiabatic is also expected to grow ex-
ponentially with an exponent twice as large. Therefore, this
gives an estimate for how the computation time should scale
if the evolution of the state is adiabatic.

2. Success probability

The next important observable for our analysis is the suc-
cess probability, which is obtained by calculating the square
of the overlap of the resulting state at the end of the an-
nealing process with the known ground state of the problem

Hamiltonian. We use the second-order Suzuki-Trotter prod-
uct formula algorithm [60–63] to simulate the dynamics of
quantum annealing. These simulations are performed for three
annealing times, TA = 10, 100, and 1000, which are dimen-
sionless since h̄ has been set equal to 1.

As indicated by our previous study [52], for our problems,
the annealing time TA = 10 can be too short for the state of
the system to follow the ground state adiabatically, especially
for the problem sets with larger N . This gives way to cer-
tain nonadiabatic mechanisms to be involved in the evolution
of the state of the system. On the other hand, TA = 1000
was found to be sufficiently long for the success probability
to follow the Landau-Zener formula for a majority of the
problems. The annealing time TA = 100 is the intermediate
annealing time for which the difficult problems might still
exhibit a nonadiabatic evolution, while the systems with larger
minimum energy gaps evolve adiabatically.

We obtain the success probabilities for the three quantum
annealing algorithms and for the three chosen annealing times
and plot the resulting distributions. For all the results shown,
the raw success probabilities p obtained from the simulations
are transformed such that 〈Psucc〉 = 1/2, where

Psucc = 1 − (1 − p)R. (13)

The parameter R can be interpreted as the number of rep-
etitions, or a scaling factor for the annealing time, required
to shift the average success probability of the set to 0.5. For
long annealing times, it is possible to derive distributions for
the success probability for a set of problems, given the corre-
sponding minimum energy gap distributions. Such a mapping
is derived in Appendix B.

3. Time to solution

Finally, we discuss the third metric for determining the
complexity of quantum annealing, the time to solution. It is
the runtime required to obtain the ground state at least once in
multiple runs of the algorithm with a certain probability Ptarget

and is given by

T = ln(1 − Ptarget )

ln(1 − p)
TA, (14)

where the success probability p is obtained with a single run
of the algorithm with annealing time TA. We define T99 as
the runtime required to obtain at least one solution with 99%
certainty, i.e., T99 = T (Ptarget = 0.99).

Like in the case of the minimum energy gaps, we plot the
deciles for T99 as a function of the problem size (10 � N �
18). In this case, the easier problems of the set have a runtime
smaller than the first decile, while the problems having a
runtime larger than the ninth decile correspond to the hard
cases. To determine the scaling of T99 an appropriate function
is fit to the deciles in the asymptotic limit.

If the annealing time is long enough for an adiabatic evo-
lution, the success probability is mainly determined by the
minimum energy gap between the ground state and the first
excited state of the Hamiltonian. However, for a nonadia-
batic evolution the exact energy spectrum of the problem
also becomes relevant. For example, the occurrence of an
even number of comparably small anticrossings between the
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FIG. 1. Median-normalized minimum energy gap distributions P (x)dx for (a) the standard quantum annealing Hamiltonian (1), (b) the
Hamiltonian (8) with the ferromagnetic trigger Hamiltonian, and (c) the Hamiltonian (8) with the antiferromagnetic trigger Hamiltonian, for
the problem set with N = 18, where x = �/�m, with �m the median minimum energy gap of the set.

two lowest energy levels can be beneficial for the final suc-
cess probability [52]. Such observations cannot be accounted
for within the theoretical models like Landau-Zener theory
and the adiabatic theorem. It therefore becomes interesting
to compare the scaling of the theoretical runtime with the
numerically obtained T99 scaling in order to understand the
ways in which the nonadiabatic mechanisms can contribute to
the scaling.

C. Analysis of the D-Wave results

This section briefly describes how the D-Wave quantum
annealer is employed to solve the sets of problems and how
the obtained results (shown in Sec. V) are analyzed. Cur-
rently, D-Wave offers systems with two types of quantum
chip topologies. The first is the Chimera topology available on
the DW_2000Q_6 system (DW2000Q), while the more recent
and better connected one is the Pegasus topology available
on the Advantage_system1.1 system (DWAdv) [26]. To find
the ground state of our Ising Hamiltonian using the D-Wave
annealer, the problem Hamiltonian needs to be mapped to the
working graph of the system. However, it is possible that a
Hamiltonian cannot be directly embedded in the system and
requires two or more physical qubits to be grouped together
to represent a logical qubit of the Hamiltonian instead. Since
the Pegasus topology has a higher connectivity compared to
that of the Chimera topology, most of the problems could be
directly embedded in DWAdv, whereas only approximately
half of the cases have a direct mapping on DW2000Q. For
example, for the set corresponding to N = 17, only 489 out of
913 problems have a direct mapping on DW2000Q, but this
number increases to 854 on DWAdv.

We employ both DW2000Q and DWAdv systems to solve
nine sets of problems (10 � N � 18) and choose annealing
times of 4, 20, and 100 μs. The success probabilities in this
case are determined by finding the ratio of the outcomes with
the correct ground-state energy to the total number of samples.
For annealing times of 4 and 20 μs, the total number of
samples is chosen to be 10 000, while there are 2000 samples
for TA = 100 μs. We gauge the performance of the D-Wave
systems by observing the success probability distributions by
mapping the raw success probability p to success probability
Psucc using Eq. (13) and the scaling of T99 and compare it to
the results obtained from the simulations.

It should be mentioned at this point that the annealing times
available on the D-Wave systems are significantly longer than
those feasible for the simulations. Moreover, noise and tem-
perature effects play a significant role in their performance,
and the annealer is therefore not expected to behave adiabati-
cally, even for sufficiently long annealing times [64,65].

IV. NUMERICAL RESULTS

In this section we present the simulation results for the
three previously described observables, which can help us un-
derstand the complexity of the quantum annealing algorithm
in solving the selected problems. The following sections dis-
cuss these observables one by one.

A. Minimum energy gap analysis

We begin by addressing the results obtained for the static
quantifier of quantum annealing, i.e., the minimum energy
gap where we have further separated the distributions of the
minimum energy gaps from the scaling results as a function
of the problem size.

1. Minimum energy gap distributions

Figure 1(a) shows the median-normalized minimum en-
ergy gap distributions for the standard quantum annealing
Hamiltonian given by Eq. (1), for the problem set with N =
18. The corresponding distributions for problem sets with
N = 16, 17 are shown in Figs. 2(a) and 2(b). It can be seen
that the distribution agrees well with the Fréchet function (see
Appendix A) and that the value of the variable k [see Eq. (A1)]
decreases as the problem size becomes larger, tending towards
the value of 1 as N increases.

The minimum energy gap distribution for the quantum an-
nealing Hamiltonian given by Eq. (8) with the ferromagnetic
trigger Hamiltonian, as shown in Fig. 1(b), differ significantly
from the distributions for the standard quantum annealing
Hamiltonian given by Eq. (1). This is also the case for the
problem sets corresponding to N = 16, 17 shown in Figs. 2(c)
and 2(d), respectively. Previous studies have suggested that
the addition of the ferromagnetic trigger Hamiltonian to the
standard Hamiltonian for quantum annealing can result in
an enlargement of the minimum energy gaps for almost all
the problems belonging to the studied sets [52]. The distri-
bution therefore is very different from that of the standard
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FIG. 2. Median-normalized minimum energy gap distributions P (x)dx for the quantum annealing Hamiltonian given by (a) and (b) Eq. (1),
(c) and (d) Eq. (8) with the ferromagnetic trigger Hamiltonian, and (e) and (f) Eq. (8) with the antiferromagnetic trigger Hamiltonian, for
problem sets with (a), (c), and (e) N = 16 and (b), (d), and (f) N = 17, where x = �/�m, with �m the median minimum energy gap of
the set.

quantum annealing Hamiltonian and is similar to the normal
distribution.

To obtain the fits for the minimum energy gap distribu-
tion, we fit translated Weibull functions [Eq. (A3)] to the
distribution of correlation length ξ = 1/�min. In this case, the
parameter μ in Eq. (A3) can be interpreted as the shift due
to adding the ferromagnetic trigger Hamiltonian. By setting
the parameters μ, b, and k obtained from fitting the trans-
lated Weibull function to the median-normalized correlation
length distribution, we fit the transformed, translated Weibull
function [Eq. (A4)] to the corresponding median-normalized
minimum energy gap distribution by the parameter a. The
resulting fits match the form of the distribution well.

Finally, the median-normalized minimum energy gap dis-
tribution for the quantum annealing Hamiltonian given by
Eq. (8) with the antiferromagnetic trigger Hamiltonian for
N = 18 is shown in Fig. 1(c), while that for problem sets with
N = 16 and 17 is shown in Figs. 2(e) and 2(f), respectively.
For this case, exponentially decaying functions match the
distribution well. This function is equivalent to the Weibull
distribution with k = 1.

At this point, it should be noted that three distinct minimum
energy gap distributions are obtained for the three quan-
tum annealing Hamiltonians discussed. Therefore, according
to Eq. (B4), we can expect to obtain three kinds of suc-
cess probability distributions for the three quantum annealing
Hamiltonians.

2. Scaling of minimum energy gaps

In order to investigate the complexity of the quantum an-
nealing algorithm in solving the set of problems considered
in this work, we now turn to the scaling aspect of the mini-
mum energy gaps as a function of the problem size. Figure 3

shows the scaling of the median minimum energy gaps for
the three types of quantum annealing Hamiltonians examined
in this study. The odd deciles for the minimum energy gaps
as a function of the problem size for the three annealing
Hamiltonians are given in Fig. 4. It can be observed that for
all three cases, the decile values decrease exponentially as a
function of the problem size in the asymptotic limit. Hence,
we use exponents obtained by fitting the exponential functions
�min = De−r�N to the deciles and also the median, to deter-
mine the scaling of the minimum energy gaps. For all three
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FIG. 3. Scaling of median minimum energy gaps for the quantum
annealing Hamiltonian given by Eq. (1) (squares), the quantum an-
nealing Hamiltonian given by Eq. (8) with the ferromagnetic trigger
Hamiltonian (circles), and the quantum annealing Hamiltonian given
by Eq. (8) with the antiferromagnetic trigger Hamiltonian (triangles).
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FIG. 4. Deciles for the minimum energy gaps for the quantum annealing Hamiltonian given by (a) Eq. (1), (b) Eq. (8) with the
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quantum annealing Hamiltonians, the fitting is done for the
sets with N � 14.

The exponential vanishing of the minimum energy gaps
with the increasing size of the problems in the asymptotic
limit confirms the hardness of these problems. From Fig. 4
it can also be seen that while for the quantum annealing
Hamiltonians given by Eqs. (1) and (8) with the ferromagnetic
trigger Hamiltonian the exponent r� grows monotonically as
one goes from D1 to D9, for the Hamiltonian given by Eq. (8)
with the antiferromagnetic trigger Hamiltonian the exponents
stay similar for all the deciles. The median minimum energy
gap, given by D5, scales with a rate of r� = −0.529 for the
standard quantum annealing Hamiltonian given by Eq. (1),
whereas r� = −0.212 and −0.265 for the quantum annealing
Hamiltonian given by Eq. (8) with the ferromagnetic trigger
Hamiltonian and the antiferromagnetic trigger Hamiltonian,
respectively. Therefore, the addition of both triggers improves
the scaling of the median minimum energy gap despite the
finding that adding the antiferromagnetic trigger can either en-
large or reduce the minimum energy gaps between the ground
state and first excited states of a Hamiltonian [9,52].

Using Eq. (12), we extend this analysis to obtain the
scaling of the theoretical runtime, which provides an esti-
mate for how the computation time required for ensuring
an adiabatic evolution of the state of the system grows
as the size of the problem increases. We therefore expect
that the median runtime should scale with a rate of rTR =
1.058 for the quantum annealing algorithm using the Hamil-
tonian (1) if one were to fit functions of the form TA =
D exp(rTRN ) to the corresponding plots. Similarly, for the
quantum annealing algorithm using the Hamiltonian (8) with
the ferromagnetic trigger Hamiltonian, the median runtime is
expected to grow with an exponent rTR = 0.424, while for the
algorithm using the Hamiltonian (8) with the antiferromag-
netic trigger Hamiltonian, rTR is expected to be 0.530 in the
median.

Since a brute-force search for the ground state of the prob-
lem Hamiltonian scales as 2N with the Hilbert space, and
therefore with an exponent of ln(2) = 0.693, even a simple
random generation of the eigenstates can yield the ground
state of the problem Hamiltonian faster than the standard al-
gorithm for quantum annealing, i.e., with the Hamiltonian (1).
However, the expected runtime improves upon adding both
trigger Hamiltonians, not only in comparison to the standard
quantum annealing algorithm, but also compared to the brute-

force search, especially for the quantum annealing algorithm
with the ferromagnetic trigger Hamiltonian.

B. Success probability distributions

Having discussed the static quantifier of the quantum an-
nealing search complexity for our problems, we now move
on to address a dynamic quantifier: the success probability
obtained using the three quantum annealing Hamiltonians
considered in this work for three annealing times.

Figures 5(a)–5(c) show the mapped success probabil-
ity distributions obtained, according to Eq. (13), from the
quantum annealing algorithm with the Hamiltonian (1), for
problem sets with N = 18 and annealing times of TA =
10, 100, 1000, respectively. For the success probability distri-
butions corresponding to the problem set with N = 17 for the
three annealing Hamiltonians used in this work, see Fig. 6.
Using the energy scale of a D-Wave annealer, this trans-
lates to annealing times of 0.5, 5, and 50 ns, respectively.
It can be observed that the resulting distribution is bimodal
for all the annealing times and both problem sets. Although
not for 2-SAT problems, similar results have been obtained
for the success probability distribution for solving spin-glass
problems using simulated quantum annealing and a 108-qubit
D-Wave One system [31].

A similar treatment of the success probability distribu-
tions obtained for the quantum annealing algorithm using
the Hamiltonian (8) with the ferromagnetic trigger Hamil-
tonian, however, results in unimodal distributions, as shown
in Figs. 5(d)–5(f). This is in contrast with the observations
in [31], where a unimodal distribution was obtained only for
the success probability of solving spin-glass problems using
simulated annealing.

Interestingly, the mapped success probability distributions
for the quantum annealing algorithm using the Hamilto-
nian (8) with the antiferromagnetic trigger Hamiltonian result
in two kinds of distributions, depending on the chosen an-
nealing time. It can be seen from Figs. 5(g)–5(i) that the
distributions corresponding to TA = 10 seem rather constant,
whereas on increasing the annealing time, like in [31],
the distributions show bimodality. It should be noted that
this instance does not correspond to the case for which
the Landau-Zener theory predicts a constant distribution
(Appendix B). The difference originates from the fact that
the theoretical mapping between the distributions for the
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FIG. 5. Success probability distributions obtained for the quantum annealing algorithm using (a)–(c) the Hamiltonian (1), (d)–(f) the
Hamiltonian (8) with the ferromagnetic trigger Hamiltonian, and (g)–(i) the Hamiltonian (8) with the antiferromagnetic trigger Hamiltonian,
for the problem set with N = 18 for (a), (d), and (g) TA = 10; (b), (e), and (h) TA = 100; and (c), (f), and (i) TA = 1000.

minimum energy gap and the success probability utilizes the
Landau-Zener formula, which only holds in the adiabatic
limit, i.e., for long annealing times. This, however, is not
the case here as for TA = 10, especially upon adding the
antiferromagnetic trigger Hamiltonian, nonadiabatic mech-
anisms can additionally be responsible for improving the
success probability, as can be confirmed from [52]. Neverthe-
less, the success probability distributions from the simulations
for the dynamics of quantum annealing can result in three
types of distributions, i.e., unimodal, bimodal and constant
distributions.

C. Scaling of T99

In this section we present the scaling results for another
dynamic quantifier of the quantum annealing search com-
plexity, the time to solution with 99% certainty, obtained by
using Eq. (14). Figure 7 shows the scaling of the median T99

obtained from the success probabilities for the three quantum
annealing Hamiltonians considered in this work, with 10 �
N � 18 and for TA = 10, 100, 1000. The corresponding odd
deciles for the T99 as a function of the problem size are given
in Fig. 8.

As a first observation, it should be noted that, as expected,
the runtime for all the deciles increases exponentially as the
problem size increases in the asymptotic limit, and thus the
fitting function T99 = D exp(rT99 N ) has been used here [see
Figs. 8(a)–8(c)]. It can also be seen that some data points
corresponding to the median T99 for TA = 100 and 1000 are al-
most identical in Figs. 7(a) and 7(b). Since for these annealing
times the Landau-Zener formula holds, the T99 coincides with
the annealing time required to obtain the success probability
of 0.99. Second, the median T99 scales with a rate rT99 = 0.530
for TA = 10, but increases to rT99 = 1.170 and 1.205 as the
annealing time is increased to 100 and 1000, respectively. This
is an interesting observation as it suggests that for long anneal-
ing times, the runtime required to obtain at least one solution
with 99% probability scales with a similar exponent as pre-
dicted by the adiabatic theorem for the runtime as a function
of the minimum energy gaps (rTR = 1.058 for the standard
quantum annealing algorithm, as given in Sec. IV A 2) and
thus worse than the brute-force search. For the short anneal-
ing time, however, the exponent is significantly smaller than
the theoretical prediction and is also better than the brute-
force search. This trend is also observed for the other two
quantum annealing algorithms using the Hamiltonian (8), with
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FIG. 6. Success probability distributions obtained for the quantum annealing given by (a)–(c) Eq. (1), (d)–(f) Eq. (8) with the ferromagnetic
trigger Hamiltonian, and (g)–(i) Eq. (8) with the antiferromagnetic trigger Hamiltonian, for the problem set with N = 17 for (a) and (d) TA = 10,
(b) and (e) TA = 100, and (c) and (f) TA = 1000.

the ferromagnetic [Fig. 7(b)] and the antiferromagnetic trigger
Hamiltonian [Fig. 7(c)], and can be explained as follows. The
annealing time TA = 10 is not long enough for the state of
the system to evolve adiabatically, and hence the nonadiabatic
mechanism of fast annealing can play a role in improving the
success probabilities [52], making the exponent of the scaling
of the median T99 smaller. Upon increasing the annealing

time, the state of the system follows the adiabatic theorem, and
therefore the dynamically obtained runtimes agree well with
the theoretically predicted runtimes. It should nevertheless be
noted that these observations have been found for the given
set of hard 2-SAT problems, for which the ideal adiabatic
evolution scales poorly compared even with the brute-force
search.
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FIG. 9. Success probability distributions obtained using (a)–(c) DW2000Q and (d)–(f) DWAdv for the problem set with N = 18 for (a) and
(d) TA = 4 μs, (b) and (e) TA = 20 μs, and (c) and (f) TA = 100 μs.
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FIG. 10. Success probability distributions obtained using (a)–(c) DW2000Q and (d)–(f) DWAdv for the problem set with N = 17 for
(a) and (d) TA = 4 μs, (b) and (e) TA = 20 μs, and (c) and (f) TA = 100 μs.

Additionally, by comparison of the algorithms with the
three Hamiltonians, it can be seen that for the short annealing
time of TA = 10, the quantum annealing algorithm using the
Hamiltonian (8) with the antiferromagnetic trigger Hamilto-
nian results in the best scaling (rT99 = 0.277 for the median
T99). This is the regime where nonadiabatic mechanisms can
play a significant role in the evolution of the system and the
addition of the antiferromagnetic trigger enhances the nonadi-
abatic effects, thus improving the scaling. On the other hand,
in the long annealing time limit, where the evolution is mainly
adiabatic, quantum annealing using the Hamiltonian (8) with
the ferromagnetic trigger Hamiltonian shows the best scaling
(rT99 = 0.475 for TA = 100 for median T99), consistent with
the scaling obtained for the minimum energy gaps.

We can also observe that even for longer annealing times,
the exponent rT99 slightly varies from the theoretically pre-
dicted rTR. To understand the reason for such a deviation, it
can be noted from the success probability versus minimum
energy plots in [52] that for our set of problems, the exponents
of the minimum energy gap in the Landau-Zener formula
are slightly different from 2 for the three quantum annealing
Hamiltonians.

V. D-WAVE RESULTS

Finally, in this section we perform an analysis with the data
obtained with the two D-Wave systems similar to that per-
formed with the numerical results, by examining the success
probability distributions and the scaling of T99.

A. Success probability distributions

Using Eq. (13), we map the raw success probabilities
p such that 〈Psucc〉 = 1/2, as was done for the numerical
results. Figures 9(a)–9(c) show the mapped success prob-
ability distributions for the problem set with N = 18 and

annealing times TA = 4, 20, 100 μs using DW2000Q. Fig-
ure 10 shows the success probability distributions obtained
from the two systems for the problem set with N = 17. It
can be seen that for all annealing times, the distribution is al-
ways bimodal for DW2000Q, as was the numerically obtained
success probability distribution using the standard quantum
Hamiltonian given in Eq. (1).

Interestingly, the mapped success probability distributions
for the same problem sets and annealing times but ob-
tained with DWAdv are significantly different, as shown in
Figs. 9(d)–9(f). These distributions are not bimodal, but in-
stead are closer to unimodal and constant distributions. Such
distributions were also obtained from the simulations of the
dynamics of quantum annealing using the Hamiltonian (8)
with the ferromagnetic and the antiferromagnetic trigger.
However, the similar results from the simulations correspond
to quantum annealing Hamiltonians different from the stan-
dard Hamiltonian implemented by D-Wave. Therefore, unlike
the simulations, the D-Wave systems are not ideal and many
other effects, such as temperature and noise, play a major role
during the evolution of the system.

B. Scaling of T99

We discuss the scaling of the deciles for T99, as was done
in Sec. IV C, from the success probabilities obtained with the
two D-Wave systems. In calculating the deciles for T99, we
have omitted the problems which could not be directly embed-
ded in the D-Wave system in order to have a fair comparison
with the scaling results obtained from the simulations.

We begin with Fig. 11(a), which shows the median T99

obtained from the success probabilities using DW2000Q.
In this case too, in the asymptotic limit the T99 deciles
(shown in Fig. 12) are found to increase exponentially as
the problem size increases and hence are fit to functions
T99 = D exp(rT99 N ). The exponents rT99 obtained from the
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FIG. 11. Scaling of the median T99 for the cases with a native embedding on (a) DW2000Q and (b) DWAdv for TA = 4 μs (squares),
TA = 20 μs (circles), and TA = 100 μs (triangles).

fitting for the scaling of the median are 0.674, 0.511, and
0.531 for annealing times of 4, 20, and 100 μs, respectively.
These values are better than the theoretical estimate for the
runtime obtained from the adiabatic theorem (rTR = 1.086
from Sec. IV A 2) and better than the exponent for the brute-
force search. Moreover, for annealing times 20 and 100 μs,
the scaling exponents are similar to the scaling rate of the
numerical T99 for the quantum annealing algorithm using the
Hamiltonian (1) in the fast annealing limit (rT99 = 0.530 for
TA = 10 in Sec. IV C). This behavior can be explained on the
basis of the noise present in the D-Wave system, which can
give way to several nonadiabatic mechanisms improving the
success probability.

A similar treatment of the median T99 obtained from the
success probabilities using DWAdv results in an even better
scaling, as shown in Fig. 11(b). In this case, rT99 obtained from
the fits to the median T99 is found to be 0.393, 0.325, and 0.302
for annealing times of 4, 20 and 100 μs. Although there is a
need for further research, the topological differences between
the connectivity of the qubits in the two D-Wave systems
can offer a plausible explanation for the dissimilarity between
the scaling results from the two systems. While a qubit in
DW2000Q has a connectivity of 6, in DWAdv each qubit
is connected to 15 other qubits. This can lead to additional
noise being present in DWAdv, which can contribute towards
a better scaling performance.
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Another distinguishing factor shown by the scaling results
from the D-Wave systems compared to the simulation re-
sults is that the scaling exponents rT99 become approximately
smaller as the annealing time is increased on both D-Wave
systems. A probable explanation for such a behavior is a
more significant effect of the noise present in the systems
for longer annealing times, as the system is in the quasistatic
limit [64]. Moreover, unlike the annealing schedule used in the
simulations, the D-Wave annealers do not use linear functions
for A(s) and B(s).

VI. CONCLUSION

The goal of this work was to assess the performance of
quantum annealing in solving 13 sets of hard 2-SAT problems
corresponding to different problem sizes, using both simula-
tions and the D-Wave quantum annealers. In addition to the
standard Hamiltonian used for quantum annealing, we studied
the performance of the algorithm in introducing two variations
to the standard Hamiltonian in our simulations, by adding the
ferromagnetic or the antiferromagnetic trigger Hamiltonian.
The performance of the algorithm is determined by studying
the distributions and/or scalings of three observables: the
minimum energy gap between the ground state and the first
excited state of the Hamiltonian, the success probability, and
the time to solution.

Focusing first on the distributions of the minimum en-
ergy gaps for the given problems, using the three quantum
annealing Hamiltonians considered in this work, we found
three distinct distributions for different Hamiltonians consid-
ered in this work. Interestingly, we also obtained three kinds
of success probability distributions from the simulations as
well as the D-Wave systems, depending on the chosen an-
nealing Hamiltonian and/or the annealing parameters. The
numerically obtained success probability distributions for the
standard quantum annealing Hamiltonian and those obtained
using DW2000Q were bimodal for all the chosen annealing
times. On the other hand, simulations using the annealing
Hamiltonians with the ferromagnetic trigger Hamiltonian re-
sulted in unimodal distributions for all the annealing times.
Constant and bimodal success probability distributions were
obtained numerically for the annealing Hamiltonian with the
antiferromagnetic trigger Hamiltonian for different annealing
times. Constant and unimodal distributions were also obtained
from DWAdv, suggesting that slightly different mechanisms
were at play in the two D-Wave systems.

Second, we found an exponential scaling of the minimum
energy gaps for all the considered quantum annealing Hamil-
tonians (see Table I), confirming the hardness of the 2-SAT
problems. As a consequence, the scaling of T99 in the case
of an ideal adiabatic evolution using the standard quantum an-
nealing Hamiltonian is worse than even a brute-force search of
the ground state for the given problems. However for the short
annealing time TA = 10, the scaling exponent is significantly
smaller. A similar trend was also observed upon adding the
two trigger Hamiltonians. Such short annealing times lead to
a diabatic evolution of the state of the system, which improves
the scaling performance for the 2-SAT problems.

With the addition of the ferromagnetic and the antiferro-
magnetic trigger Hamiltonians to the annealing Hamiltonian,

TABLE I. Median scaling exponents r� and rT99 for minimum
energy gaps and T99 for TA = 10, 100, 1000, respectively, obtained
from simulations for the three quantum annealing Hamiltonians. The
scaling exponents for the theoretical runtimes are rTR = 2|r�|.

rT99

Hamiltonian r� TA = 10 TA = 100 TA = 1000

standard −0.529 0.530 1.170 1.205
ferromagnetic trigger −0.212 0.373 0.475 0.478
antiferromagnetic trigger −0.265 0.277 0.651 0.617

we observed a better scaling of the minimum energy gaps
as a function of the problem size, especially for the former.
This improvement also manifested as a smaller scaling ex-
ponent for the median T99 in both these cases and for the
three annealing times compared to the standard quantum an-
nealing Hamiltonian. Therefore, in the long annealing time
regime, the addition of the ferromagnetic trigger Hamiltonian
leads to the smallest scaling exponent for the median T99. On
the other hand, since the addition of the antiferromagnetic
trigger Hamiltonian facilitates various nonadiabatic mecha-
nisms [52], for the given set of 2-SAT problems and short
annealing time TA = 10, we obtain the best scaling with the
addition of the antiferromagnetic trigger Hamiltonian. The
scaling exponent in this case is better also compared to that
obtained using simulated annealing to solve these problems
(rSA = 0.34) [43].

Although the chosen annealing times for the D-Wave de-
vices are much longer than those for the simulations, the
scaling behavior of the T99 obtained using DW2000Q is com-
parable to that of the short annealing time scaling of the
standard quantum annealing Hamiltonian for all the consid-
ered annealing times (see Table II). This observation suggests
that the D-Wave systems are not working ideally, and noise
and temperature effects play a role similar to the nonadiabatic
mechanisms in the case of simulations, in enhancing their
scaling performance in solving the given set of problems.
Furthermore, the scaling exponents for the median T99 ob-
tained from DWAdv are even smaller, making the differences
between the two systems evident. A better understanding of
the temperature and noise effects in these systems calls for
further investigation.

Although from our results it is noted that short annealing
times in the case of simulations, and temperature and noise
effects in the D-Wave systems are beneficial for the scaling
complexity of quantum annealing, it should be emphasized
that these observations are specific to hard 2-SAT problems.

TABLE II. Median scaling exponent rT99 for TA = 4, 20, 100 μs,
obtained by using DW2000Q and DWAdv.

rT99

Device TA = 4 μs TA = 20 μs TA = 100 μs

DW2000Q 0.674 0.511 0.531
DWAdv 0.393 0.325 0.302
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It is possible to obtain a different scaling behavior for other
problems.
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APPENDIX A: DISTRIBUTIONS

We present the probability distribution functions used in
this work to fit the distributions of the minimum energy gap
or its inverse, the correlation length. The first such distribution
is the Fréchet distribution

Fk (x) = a

(
b

x

)k+1

e−(b/x)k
, (A1)

where a, b, and k are constants. The second is the Weibull
distribution, which is given by

Wk (x) = a
(x

b

)k−1
e−(x/b)k

. (A2)

We also define the translated Weibull distribution

Wk (x) = a
(x − μ

b

)k−1

e−[(x−μ)/b]k
, (A3)

where μ is the extent of the translation. Finally, we derive the
distribution for a variable y = 1/x, if the distribution for x is
found to follow the translated Weibull distribution. The Jaco-
bian for this mapping is J = ‖∂x/∂y‖ = 1/x2 and therefore

Wk (y) = a(1 − μy)2

(
1 − μy

by

)k+1

e−[(1−μy)/b�min]k
. (A4)

This distribution will be referred to as the transformed, trans-
lated Weibull distribution.

APPENDIX B: MAPPING SUCCESS PROBABILITY
DISTRIBUTIONS FROM THE DISTRIBUTIONS

OF THE MINIMUM ENERGY GAP

From a theoretical perspective, the Landau-Zener theory
can provide a mapping between the minimum energy gap
and the success probability [43] if the annealing time is long
enough to allow for an adiabatic evolution of the system.
According to the formula

p = 1 − e−γ�2
min , (B1)

the parameter γ controls the speed of the sweep, which in turn
is controlled by the annealing time. Thus,

�min = γ −1/2{− ln (1 − p)}1/2, (B2)
and the Jacobian is given by

‖∂�min/∂ p‖ = 1

2
γ −1 1

�min
eγ�2

min . (B3)

Hence, if the probability distribution function for the mini-
mum energy gaps P (�min) is known, it is possible to obtain
the success probability distribution

P (p)d p = C−1P (�min)γ −1 1

�min
eγ�2

min d p, (B4)

up to the normalization constant C−1 [43].
If we find the minimum energy gap distribution to follow

the Weibull distribution function with k = 2, i.e.,

P (�min) = a

(
�min

b

)
e−(�min/b)2

, (B5)

for a certain parameter b and the normalization constant a,
then substituting P (�min) in Eq. (B4) and setting the param-
eter γ = 1/b2, we obtain P (Psucc)dPsucc = P (p|

γ=1/b2 ) dPsucc

to be constant. Similarly, it is possible to obtain unimodal or
bimodal distributions for the success probability distribution
P (Psucc) if we tune the annealing time by means of γ to
the point where 〈Psucc〉 = 1/2, depending on the distribution
functions that the minimum energy gaps follow.
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