000910535 001__ 910535
000910535 005__ 20230404094203.0
000910535 0247_ $$2doi$$a10.3389/fphy.2022.956882
000910535 0247_ $$2Handle$$a2128/32203
000910535 0247_ $$2WOS$$aWOS:000854166900001
000910535 037__ $$aFZJ-2022-03917
000910535 082__ $$a530
000910535 1001_ $$0P:(DE-Juel1)176997$$aMehta, V.$$b0$$ufzj
000910535 245__ $$aOn the hardness of quadratic unconstrained binary optimization problems
000910535 260__ $$aLausanne$$bFrontiers Media$$c2022
000910535 3367_ $$2DRIVER$$aarticle
000910535 3367_ $$2DataCite$$aOutput Types/Journal article
000910535 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1666957385_8175
000910535 3367_ $$2BibTeX$$aARTICLE
000910535 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910535 3367_ $$00$$2EndNote$$aJournal Article
000910535 520__ $$aWe use exact enumeration to characterize the solutions of quadratic unconstrained binary optimization problems of less than 21 variables in terms of their distributions of Hamming distances to close-by solutions. We also perform experiments with the D-Wave Advantage 5.1 quantum annealer, solving many instances of up to 170-variable, quadratic unconstrained binary optimization problems. Our results demonstrate that the exponents characterizing the success probability of a D-Wave annealer to solve a quadratic unconstrained binary optimization correlate very well with the predictions based on the Hamming distance distributions computed for small problem instances.
000910535 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000910535 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910535 7001_ $$0P:(DE-Juel1)144355$$aJin, F.$$b1$$ufzj
000910535 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, K.$$b2$$eCorresponding author$$ufzj
000910535 7001_ $$0P:(DE-Juel1)179169$$aDe Raedt, H.$$b3$$ufzj
000910535 773__ $$0PERI:(DE-600)2721033-9$$a10.3389/fphy.2022.956882$$gVol. 10, p. 956882$$p956882$$tFrontiers in physics$$v10$$x2296-424X$$y2022
000910535 8564_ $$uhttps://juser.fz-juelich.de/record/910535/files/fphy-10-956882.pdf$$yOpenAccess
000910535 8767_ $$d2022-12-28$$eAPC$$jDeposit$$z2116,50 USD
000910535 909CO $$ooai:juser.fz-juelich.de:910535$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000910535 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176997$$aForschungszentrum Jülich$$b0$$kFZJ
000910535 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144355$$aForschungszentrum Jülich$$b1$$kFZJ
000910535 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b2$$kFZJ
000910535 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179169$$aForschungszentrum Jülich$$b3$$kFZJ
000910535 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000910535 9141_ $$y2022
000910535 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000910535 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000910535 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000910535 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-03
000910535 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910535 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-03
000910535 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT PHYS-LAUSANNE : 2021$$d2022-11-15
000910535 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-15
000910535 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-15
000910535 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-12T10:34:55Z
000910535 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-12T10:34:55Z
000910535 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-05-12T10:34:55Z
000910535 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-15
000910535 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-15
000910535 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-15
000910535 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-15
000910535 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000910535 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000910535 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000910535 920__ $$lyes
000910535 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000910535 9801_ $$aFullTexts
000910535 980__ $$ajournal
000910535 980__ $$aVDB
000910535 980__ $$aUNRESTRICTED
000910535 980__ $$aI:(DE-Juel1)JSC-20090406
000910535 980__ $$aAPC