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iUniversità della Basilicata, Potenza, Italy

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP04(2019)077

https://doi.org/10.1007/JHEP04(2019)077


J
H
E
P
0
4
(
2
0
1
9
)
0
7
7

R. Froeschl,1 T. Fukuda,38 G. Galati,2,d J. Gall,1 L. Gatignon,1 G. Gavrilov,5

V. Gentile,2,d B. Goddard,1 L. Golinka-Bezshyyko,15 A. Golovatiuk,15 D. Golubkov,32

A. Golutvin,37 P. Gorbounov,1 S. Gorbunov,8 D. Gorbunov,39 V. Gorkavenko,15

Y. Gornushkin,6 M. Gorshenkov,29 V. Grachev,5 A.L. Grandchamp,10 G. Granich,8

E. Graverini,14 J.-L. Grenard,1 D. Grenier,1 V. Grichine,8 N. Gruzinskii,36 Yu. Guz,33

G.J. Haefeli,10 C. Hagner,16 H. Hakobyan,27 I.W. Harris,10 C. Hessler,1

A. Hollnagel,25 B. Hosseini,37 M. Hushchyn,9 G. Iaselli,30,a A. Iuliano,2,d

V. Ivantchenko,8 R. Jacobsson,1 D. Joković,54 M. Jonker,1 I. Kadenko,15 V. Kain,1
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Abstract: Heavy Neutral Leptons (HNLs) are hypothetical particles predicted by many

extensions of the Standard Model. These particles can, among other things, explain the

origin of neutrino masses, generate the observed matter-antimatter asymmetry in the Uni-

verse and provide a dark matter candidate.

The SHiP experiment will be able to search for HNLs produced in decays of heavy

mesons and travelling distances ranging between O(50 m) and tens of kilometers before de-

caying. We present the sensitivity of the SHiP experiment to a number of HNL’s benchmark

models and provide a way to calculate the SHiP’s sensitivity to HNLs for arbitrary patterns

of flavour mixings. The corresponding tools and data files are also made publicly available.
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1 The SHiP experiment and Heavy Neutral Leptons

The SHiP experiment. The Search for Hidden Particles (SHiP) experiment [1–4] is a

new general purpose fixed target facility proposed at the CERN Super Proton Synchrotron

(SPS) accelerator to search for long-lived exotic particles with masses between few hundred

MeV and few GeV. These particles are expected to be predominantly produced in the

decays of heavy hadrons. The facility is therefore designed to maximise the production

and detector acceptance of charm and beauty mesons, while providing the cleanest possible

environment. The 400 GeV proton beam extracted from the SPS will be dumped on a high

density target with the aim of accumulating 2 × 1020 protons on target during 5 years of

operation. The charm production at SHiP exceeds that of any existing and planned facility.

A dedicated detector, based on a long vacuum tank followed by a spectrometer and

by particle identification detectors, will allow probing a variety of models with light long-

lived exotic particles. Since particles originating in charm and beauty meson decays are

produced with a significant transverse momentum with respect to the beam axis, the

detector should be placed as close as possible to the target. A critical component of SHiP

is therefore the muon shield [5], which deflects away from the detector the high flux of

muons produced in the target, that would otherwise represent a very serious background

for hidden particle searches. To suppress the background from neutrinos interacting in the

fiducial volume, the decay volume is maintained under vacuum [3]. The detector is designed

to reconstruct the exclusive decays of hidden particles and to reduce the background to

less than 0.1 events in the sample of 2 × 1020 protons on target [4]. The detector consists

of a large magnetic spectrometer located downstream of a 50 m long and 5 × 10 m wide

decay volume. The spectrometer is designed to accurately reconstruct the decay vertex,

mass and impact parameter of the decaying particle with respect to the target. A set of

calorimeters followed by muon chambers provide identification of electrons, photons, muons

– 1 –
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Figure 1. Overview of the SHiP experimental facility.

and charged hadrons. A dedicated timing detector measures the coincidence of the decay

products, which allows the rejection of combinatorial background.

The decay volume is surrounded by background taggers to tag neutrino and muon

inelastic scattering in the surrounding structures, which may produce long-lived neutral

Standard Model particles, such as KL, that have similar topologies to the expected signal.

The experimental facility is also ideally suited for studying the interactions of tau

neutrinos. It will therefore host an emulsion cloud chamber based on the Opera concept,

upstream of the hidden particle decay volume, followed by a muon spectrometer. The

SHiP facility layout is shown in figure 1. Recent progress report [4] outlines the up-to-date

experimental design as well as describes changes since the initial technical proposal [2].

Heavy Neutral Leptons. Among hypothetical long-lived particles that can be probed

by the SHiP experiment are Heavy Neutral Leptons (or HNLs) [6]. The idea that HNLs

— also known as right-handed, Majorana or sterile neutrinos — can be responsible for

the smallness of neutrino masses goes back to the 1970s [7–12]. It has subsequently been

understood that the same particles could be responsible for the generation of the matter-

antimatter asymmetry of the Universe [13]. The idea of this scenario, called leptogenesis,

was developed since the 1980s (see reviews [14–19] and references therein). In particular,

it was found that the Majorana mass scale of right-handed neutrinos can be as low as

O(GeV) [20–22], thus providing a possibility for a leptogenesis scenario to be probed at a

particle physics laboratory in the near future.

It was demonstrated in 2005 that by adding just three HNLs to the Standard Model

one could not only explain neutrino oscillations and the origin of the baryon asymmetry of

the Universe, but also provide a dark matter candidate [21, 23]. Two of the HNLs should

have masses in the GeV range, see [24] for a review. This model, dubbed Neutrino Minimal

Standard Model (or νMSM), is compatible with all the measurements so far performed by

accelerator experiments and at the same time provides a solution for the puzzles of modern

– 2 –
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physics [24, 25]. This made models with GeV scale HNLs a subject of intensive theoretical

studies in the recent years [19, 26–45].

HNLs are massive Majorana particles that possess neutrino-like interactions with W

and Z bosons (the interaction with the Higgs boson does not play a role in our analysis

and will be ignored). The interaction strength is suppressed compared to that of ordinary

neutrinos by flavour dependent mixing angles Uα � 1 (α = {e, µ, τ}). Thus, even the

simplest HNL model contains 4 parameters: the HNL mass MN and 3 mixing angles U2
α.1

The idea of experimental searches for such particles goes back to the 1980s (see e.g. [46–50])

and a large number of experiments have searched for them in the past (see review of the past

searches in [51–53]). HNLs are being searched at currently running experiments, including

LHCb, CMS, ATLAS, T2K, Belle and NA62 [54–61].

The sensitivity of the SHiP experiment to HNLs was previously explored for several

benchmark models [2, 65, 66] assuming particular ratios between the three HNL mixing

angles [51]. This paper updates the previous results in a number of important ways. A

recent work [67] revised the branching ratios of HNL production and decay channels. In

addition, the estimates of the numbers of D- and B-mesons now include cascade produc-

tion [64]. We update the lower limit of the SHiP sensitivity region and also evaluate the

upper bound for the first time. We discuss potential impact of HNL production from Bc
mesons. Moreover, our current sensitivity estimates are not limited to a set of benchmark

models. Rather, we compute a sensitivity matrix — a model-independent tool to calculate

the SHiP sensitivity for any model of HNL flavour mixings.

The paper is organised as follows. Section 2 describes the simulation of HNL events.

The resulting sensitivity curves for mixing with each individual flavour, for the benchmark

models of ref. [2] as well as the sensitivity matrix — are discussed in section 3. We present

our method to evaluate the SHiP sensitivity to HNLs in a model-independent way in

section 4 and conclude in section 5.

2 Monte Carlo simulation of heavy neutral leptons at SHiP

A detailed Monte Carlo simulation suite for the SHiP experiment, FairShip, was devel-

oped based on the FairRoot software framework [69]. In FairShip simulations primary

collisions of protons are generated with Pythia 8 [70] and the subsequent propagation and

interactions of particles simulated with GEANT4 [71]. Neutrino interactions are simulated

with GENIE [72]; heavy flavour production and inelastic muon interactions with Pythia

6 [73] and GEANT4. Secondary heavy flavour production in cascade interactions of hadrons

originated by the initial proton collision [64] is also taken into account, which leads to an

increase of the overall HNL production fraction (see table 1). The SHiP detector response

is simulated using GEANT4. The pattern recognition algorithms applied to the hits on the

straw spectrometer are described in [74], and the algorithms for particle identification are

presented in [75].

1The mixing angles Uα are in general complex numbers. However, the properties of HNLs that are im-

portant for us depend only on |Uα|. Throughout this work we will write U2
α instead of |Uα|2 for compactness.

– 3 –
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pN cross-section c̄c fraction b̄b fraction Cascade enhancement fcascade

σpN [2] Xc̄c [62] Xb̄b [63] charm [64] beauty [64]

10.7 mb 1.7× 10−3 1.6× 10−7 2.3 1.7

Table 1. Charm and beauty production fractions and cascade enhancement factors for the SHiP

experiment. Cross-section σpN is an average proton-nucleon inelastic cross-section for the molyb-

denum target [2].

The simulation takes the HNL mass MN and its three flavour mixings U2
e , U2

µ, U2
τ

as input parameters. For the pure HNLs mixing to a single SM flavour, the number of

detected HNL events Nevents is estimated as2

Nevents = Nprod × Pdet (2.1)

where Nprod is the number of produced HNLs that fly in the direction of the fiducial volume

and Pdet is the probability of HNL detection in the Hidden Sector detector. The number

of produced HNLs is

Nprod =
∑
q∈(c,b)

Nq ×
∑
h

f(q → h)× BR(h→ N +X)× εdecay, (2.2)

where f(q → h) is the h meson production fraction3 at SHiP (see table 2), BR(h→ N+X)

is the mass dependent inclusive branching ratios for h mesons decays with HNL in the final

state and εdecay is the geometrical acceptance — the fraction of produced HNLs that fly into

direction of the fiducial volume. Figure 2 shows the product between the meson production

fraction and its inclusive decay branching fraction into sterile neutrinos. Finally, Nq is the

total number of produced quarks and antiquarks of the given flavour q taking into account

the quark-antiquark production fraction Xq̄q and the cascade enhancement factor fcascade

given in table 1,

Nq = 2×Xq̄q × fcascade ×NPOT. (2.3)

The HNL detection probability is given by

Pdet = Pdecay × BR(N → visible)× εdet, (2.4)

where BR(N → visible) is the total HNL decay branching ratio into visible channels (see

HNL decay channels in appendix A), Pdecay is the probability that the HNL decays inside

the fiducial volume,

Pdecay = exp

(
− lini

ldecay

)
− exp

(
− lfin

ldecay

)
, (2.5)

2The case of the general mixing ratio is discussed in section 4.
3The meson production fraction is the probability that a quark of a given flavour hadronizes into the

given meson. In the sum over hadrons we consider only lightest hadrons of a given flavour that have

only weak decays. Higher resonances have negligible branching to HNLs as they mostly decay via strong

interactions.

– 4 –
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meson f(q → meson)

D+ 0.207

D0 0.632

Ds 0.088

J/ψ 0.01

meson f(q → meson)

B+ 0.417

B0 0.418

Bs 0.113

Bc ≤ 2.6× 10−3

Table 2. Production fraction and expected number of different mesons in SHiP taking into account

cascade production [68]. For f(b→ Bc) see text for details.

Ds

D
+

D
0

0.0 0.5 1.0 1.5 2.0
1.×10-4

5.×10-4
0.001

0.005
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0.100

mHNL[GeV]
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h
)B

R
(h
→
X
+
N
)

Bc,1

Bc,2

B
+

B
0

0 1 2 3 4 5 6
10-6

10-5

10-4

0.001

0.010

0.100

mHNL[GeV]

f(
h
)B

R
(h
→
X
+
N
)

Figure 2. HNL production branching ratios multiplied with the production fraction of the meson

decaying into HNL, for charm (left) and beauty (right) mesons [67]. The mixing angles have been

set to U2
e = 1, U2

µ = U2
τ = 0. The production from D+ and B+ remains relevant for higher masses

for D0 and B0 because of the fully leptonic decays h+ → N + `+. The Bc production fraction is

unknown (see text for details) and we show two examples: f(b → Bc) = 2 × 10−3 (Bc,1 line) and

f(b→ Bc) = 2× 10−4 (Bc,2 line).

where lini is the distance travelled by HNL before it entered the decay vessel; lfin is the

distance to the end of the decay vessel along the HNL trajectory; ldecay = cγτN is the

HNL decay length (γ and τN being HNL gamma factor and proper lifetime). Finally, εdet

is the efficiency of detecting the charged daughters of the decaying HNL. It takes into

account the track reconstruction efficiency and the selection efficiency, further described

in [2, 65, 75]. In order to distinguish the signal candidates from possible SM background,

we put a criteria that at least two charged tracks reconstructed to the decay point are

present. The reconstruction efficiencies for the decay channels N → µµν and N → µπ are

given in e.g. [2, section 5.2.2.2]. Using FairShip, a scan was done over the HNL parameter

space. For each set of HNL parameters we ran a simulation with 300 HNL events, produced

randomly from decay of mesons. We determined Pdecay, εdecay and εdet in each of them and

average over simulations to find the expected number of detected events, N̄events.

For HNLs with masses MN . 500 MeV kaon decays are the dominant production

channel. While O(1020) kaons are expected at SHiP, most of them are stopped in the

target or hadron stopper before decaying. As a consequence, only HNLs originating from

charm and beauty mesons are included in the estimation of the sensitivity. SHiP can

however explore the νMSM parameter space down to the constraints given by Big Bang

– 5 –
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nucleosynthesis observations [76, 77], even with this conservative assumption. It is expected

that the NA62 experiment will also probe the region below the kaon mass [78].

For HNL masses MN & 3 GeV the contribution of Bc mesons to the HNL produc-

tion can be relevant because the B+
c → N + `+ decay width is proportional to the CKM

matrix element |Vcb|2, while the decays of B+ are proportional to |Vub|2 [51, 67]. The

ratio |Vcb|2/|Vub|2 ∼ 102, which explains the relative importance of Bc channels even for

small production fraction f(b → Bc). This production fraction has not been measured

at the SHiP center of mass energy. If the Bc production fraction at SHiP is at the LHC

level, its contribution will be dominant. However, at some unknown energy close to the

Bc mass this production fraction becomes negligible. The existing Tevatron measurement

place f(b→ Bc) = 2.08+1.06
−0.95 × 10−3 at

√
s = 1.8 TeV [79]. More recent LHCb measure-

ment at
√
s = 7 and 8 TeV gave f(b → Bc)/f(b → B+) = 0.008 ± 0.004 [80]. Using

f(b→ B+) = 0.33 from the LHCb measurement performed at
√
s = 7 TeV [81], one ob-

tains f(b → Bc) = 2.6 × 10−3. Theoretical evaluations have mostly been performed for

TeV energies (see e.g. [82–85]) with the exception of the works [86, 87] that computed the

production fraction down to energies of tens of GeV (where they found the fraction to

be negligible). However, by comparing predictions of [87] with LHCb or Tevatron mea-

surements, we see that (i) it underpredicts the value of f(b → Bc) by about an order of

magnitude at these energies and (ii) it predicts stronger than observed change of the pro-

duction fraction between LHC and Tevatron energies. Therefore we have to treat f(b→ Bc)

as an unknown parameter somewhere between its LHC value and zero and provide two es-

timates: an optimistic estimate for which f(b→ Bc) is at the LHC level and a pessimistic

estimate where we do not include Bc mesons at all. In the simulation we take the angular

distribution of Bc mesons to be the same as that of B+ mesons, based on comparisons

performed with the BCVEGPY [88] and FONLL [89, 90] packages, while we rescale the

energy distribution according to the meson mass.

Detailed background studies have proven that the yield of background events passing

the online and offline event selections is negligible [2]. Therefore, the 90% confidence region

is defined as the region of the parameter space where one expects on average N̄events ≥ 2.3

reconstructed HNL events, corresponding to the discovery threshold with an expected

background yield of 0.1 events.

3 SHiP sensitivity for benchmark HNL models

Figure 3 presents the 90% C.L. sensitivity curves for HNLs mixing to only one SM flavour.

The sensitivity curves have a characteristic “cigar-like shape” for masses MN > 2 GeV.

The upper boundary is determined by the condition that the decay length of a produced

particle becomes comparable with the distance between the target and the decay volume,

and therefore the HNLs produced at the target may not reach the decay volume, see

eq. (2.5). For masses MN < 2 GeV such an upper boundary also exists, but it is outside

the plot range, owing to a much larger number of parent D mesons. The lower boundary

of the sensitivity region is determined by the parameters at which decays become too rare
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Figure 3. SHiP sensitivity curves (90% CL) for HNLs mixing to a single SM flavour: electron

(blue), muon (red) and tau (green). To indicate the uncertainty related to the unknown production

fraction of Bc meson (see text for details), we show two types of curve for each flavour. Solid

curves show the sensitivity contours when the production fraction of Bc mesons equals to that at

LHC energies: f(b→ Bc) = 2.6× 10−3. Dashed-dotted lines do not include contributions from Bc.

Below 0.5 GeV only production from D and B mesons is included (dotted lines).

(decay length much larger than the detector size). The intersection of the upper and lower

boundaries defines the maximal mass which can be probed at the experiment.

We also provide updated sensitivity estimates for the three benchmark models I–III

presented in the Technical Proposal [2, 65]. These models allow to explain neutrino flavour

oscillations while at the same time maximizing the mixing to one particular flavour, and

are defined by the following ratios of flavour couplings [51]:

I. U2
e : U2

µ : U2
τ = 52 : 1 : 1

II. U2
e : U2

µ : U2
τ = 1 : 16 : 3.8

III. U2
e : U2

µ : U2
τ = 0.061 : 1 : 4.3

The sensitivity curves for these models are shown in figure 4.

4 Model independent SHiP sensitivity

In this section we provide an efficient way to estimate the SHiP sensitivity to an HNL model

with an arbitrary ratio U2
e : U2

µ : U2
τ . It is based on the observation that the dependence

– 7 –
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Figure 4. Sensitivity curves for 3 benchmark models I–III (90%CL). Individual curves are ex-

plained in figure 3.

of the number of events, Nevents, on the mass and mixing angles of HNL factorizes, and

therefore all relevant information can be extracted from a handful of simulations, rather

than from a scan over an entire 4-dimensional HNL parameter space (MN , U
2
e , U

2
µ, U

2
τ ).

All information about the HNL production in a particular experiment is contained in

Nα(MN ) — the number of HNLs that would be produced through all possible channels

with the mixings U2
α = 1 and U2

β 6=α = 0:

Nα ≡
∑

hadrons h

Nh

∑
channels

BR(h→N +Xα)εdecay,α

∣∣∣
U2
α=1;U2

β 6=α=0
(4.1)

Here Nh is the number of hadrons of a given type h, BR(h→N + Xα) is the branching

ratio for their decay into an HNL plus any number of other particles Xα with total lepton

flavour number Lα = 1 and εdecay,α is the geometrical acceptance of HNL that in general

depends not only on the mass but also on the flavour. The overall number of HNLs (given

by eq. (2.2)) produced via the mixing with the flavour α and flying in the direction of the

decay vessel is given by

Nprod,α(MN |
−→
U2) = U2

αNα(MN ). (4.2)

The decay probability Pdecay should be treated differently, depending on the ratio of

the decay length and the distance from the target to the decay vessel. It also depends on

the production channel through the mean gamma factor γα entering the decay length.

In the limit when the decay length much larger than the distance between the beam

target and the exit lid of the SHiP decay volume, the U2
β dependence of the decay proba-

bility can be accounted for similarly to eq. (4.2):

P linear
decay,α(MN |

−→
U2) =

lfin − lini

γαc~
∑
β

U2
βΓβ(MN ), (4.3)

where Γβ is a decay width of the HNL of mass MN that has mixing angles U2
β = 1,

U2
α 6=β = 0, the definitions of lengths lini, lfin are given after eq. (2.5). The index α in

eq. (4.3) indicates that the HNL was produced via mixing U2
α (although can decay through

the mixing with any flavour), so γα is the mean gamma factor of HNLs produced through

the mixing with the flavour α.
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In the general case, when the decay length ldecay is not necessarily larger than lfin, the

analogous decay probability Pdecay,α can be expressed via (4.3) as follows:

Pdecay,α(MN |
−→
U2) =

[
exp

(
− lini

lfin − lini
P linear

decay,α(MN |
−→
U2)

)
−

exp

(
− lfin

lfin − lini
P linear

decay,α(MN |
−→
U2)

)]
× BR(N → visible), (4.4)

where BR(N → visible) is the probability that the HNL decays into the final states

detectable by SHiP.

Finally, we define the HNL detection efficiency as

εdet(MN |
−→
U2) =

∑
β

BR(N → Xβ)× εdet,β , (4.5)

where BR(N → Xβ) is the branching ratio of a decay through the mixing angle β and

εdet,β is the probability that the HNL decay products are successfully detected.

As a result, the number of detected events is given by

Ndecay

(
MN

∣∣−→U2
)

=
∑
α

Nprod,α(MN |
−→
U2)Pdecay,α(MN |

−→
U2)εdet(MN |

−→
U2). (4.6)

We see that it is sufficient to know 9 functions of the HNL mass — Nα(MN ), P linear
decay,α(MN )

and εdet,α(MN ) — to determine the number of detected events for any combination of the

mixing angles.

To determine these numbers we ran 9 Monte Carlo simulations for each mass. We

first ran 3 simulations with vectors
−→
U2 = (x, 0, 0),

−→
U2 = (0, x, 0),

−→
U2 = (0, 0, x), where x is

any sufficiently small number such that ldecay � ldet. We then ran a set of 6 non-physical

simulations, where a particle is produced solely via channel α and decays solely through

the channel β 6= α. Using results of these simulations we extract Nα, Pα and εdet,α values

that allow us to generate the expected number of detected events for any values of masses

and couplings.

The results are available at Zenodo platform [91] with instructions for reading the file

and generating sensitivity curves at different confidence levels.

5 Conclusion

Using a detailed Monte Carlo simulation of HNL production in decays of charm and beauty

mesons, and of the detector response to the signal generated by a decaying HNL, we

calculated the sensitivity of the SHiP experiment to HNLs, updating the results presented in

the Technical Proposal [2]. In particular, we assess the potential impact of HNL production

from Bc mesons decay, showing its influence on the extent of the probed HNL mass range.

We take into account cascade production of B and D mesons as well as revised estimates

of branching ratios of HNL production and decay, and we extend our calculation to masses

below ∼ 500 MeV, where SHiP has a potential to fully explore the allowed region. Finally,

we present our results as a publicly available dataset, providing a model-independent way

to calculate the SHiP sensitivity for any pattern of HNL flavour mixings.
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Figure 5. Parameter space of HNLs and potential reach of the SHiP experiment for the mixing

with muon flavour. Dark gray area is excluded from previous experiments, see e.g. [6]. Black solid

line is the recent bound from the CMS 13 TeV run [57]. Solid and dashed-dotted red lines indicate

the uncertainty, related to the production fraction of Bc mesons at SHiP energies that has not

been measured experimentally or reliably calculated (see section 2 for details). The sensitivity of

SHiP below kaon mass (dashed line) is based on the number of HNLs produced in the decay of

D-mesons only and does not take into account HNL production from kaon decays. The primordial

nucleosynthesis bounds on HNL lifetime are from [76]. The seesaw line indicates the parameters

obeying the seesaw relation |Uµ|2 ∼ mν/MN , where for active neutrino mass we substitute mν =√
∆m2

atm ≈ 0.05 eV [6].

The SHiP experiment offers an increase of up to 3 orders of magnitude in the sensitivity

to heavy neutral leptons, figure 5. It is capable of probing cosmologicaly interesting region

of the HNL parameter space, and of potentially discovering the origin of neutrino masses

and of the matter-antimatter asymmetry of the Universe.
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A HNL decays

For completeness we list the relevant HNL decay channels in table 3 (reproduced from [67]).

Channel Opens at Relevant from Relevant up to Max BR Reference

[MeV] [MeV] [MeV] [%] in [67]

N → νανβ ν̄β
∑
mν ≈ 0

∑
mν ≈ 0 — 100 (3.5)

N → ναe
+e− 1.02 1.29 — 21.8 (3.4)

N → ναπ
0 135 136 3630 57.3 (3.7)

N → e−π+ 140 141 3000 33.5 (3.6)

N → µ−π+ 245 246 3000 19.7 (3.6)

N → e−νµµ
+ 106 315 — 5.15 (3.1)

N → µ−νee
+ 106 315 — 5.15 (3.1)

N → ναµ
+µ− 211 441 — 4.21 (3.4)

N → ναη 548 641 2330 3.50 (3.7)

N → e−ρ+ 770 780 4550 10.4 (3.8)

N → ναρ
0 770 780 3300 4.81 (3.9)

N → µ−ρ+ 875 885 4600 10.2 (3.8)

N → ναω 783 997 1730 1.40 (3.9)

N → ναη
′ 958 1290 2400 1.86 (3.7)

N → ναφ 1019 1100 4270 5.90 (3.9)

N → e−D∗+s 2110 2350 — 3.05 (3.8)

N → µ−D∗+s 2220 2370 — 3.03 (3.8)

N → e−D+
s 1970 2660 4180 1.23 (3.6)

N → µ−D+
s 2070 2680 4170 1.22 (3.6)

N → ναηc 2980 3940 — 1.26 (3.7)

N → τ−νee
+ 1780 3980 — 1.52 (3.1)

N → e−ντ τ
+ 1780 3980 — 1.52 (3.1)

N → τ−νµµ
+ 1880 4000 — 1.51 (3.1)

N → µ−ντ τ
+ 1880 4000 — 1.51 (3.1)

Table 3. List of the relevant HNL decay channels with branching ratio above 1% covering

the HNL mass range up to 5 GeV implemented in FairShip. The numbers are provided for

|Ue|2 = |Uµ|2 = |Uτ |2. For neutral current channels (with neutrinos in the final state) the sum

over neutrino flavours is taken, otherwise the lepton flavour is shown explicitly. Columns: (1) the

HNL decay channel. (2) The HNL mass at which the channel opens. (3) The HNL mass starting

from which the channel becomes relevant (branching ratio of this channel exceeds 1%). For mul-

timeson final states we provide our best-guess estimates. (4) HNL mass above which the channel

contributes less than 1%, with “—” indicating that the channel is still relevant at MN = 5 GeV. (5)

The maximum branching ratio of the channel for MN < 5 GeV. (6) Reference to the appropriate

formula for decay width in ref. [67].
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