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Abstract: This paper presents a fast approach to simulating muons produced in interactions of
the SPS proton beams with the target of the SHiP experiment. The SHiP experiment will be
able to search for new long-lived particles produced in a 400GeV/c SPS proton beam dump and
which travel distances between fifty metres and tens of kilometers. The SHiP detector needs
to operate under ultra-low background conditions and requires large simulated samples of muon
induced background processes. Through the use of Generative Adversarial Networks it is possible
to emulate the simulation of the interaction of 400GeV/c proton beams with the SHiP target,
an otherwise computationally intensive process. For the simulation requirements of the SHiP
experiment, generative networks are capable of approximating the full simulation of the dense fixed
target, offering a speed increase by a factor of O(106). To evaluate the performance of such an
approach, comparisons of the distributions of reconstructed muon momenta in SHiP’s spectrometer
between samples using the full simulation and samples produced through generative models are
presented. The methods discussed in this paper can be generalised and applied to modelling any
non-discrete multi-dimensional distribution.

Keywords: Detector modelling and simulations I (interaction of radiation with matter, interaction
of photons with matter, interaction of hadrons with matter, etc); Simulation methods and programs
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1 Introduction

Generative networks are a class of machine learning algorithms designed to generate samples
according to a multidimensional function, given a randomly distributed input sample. Generative
networks have been studied in the machine learning community primarily for the purpose of image
generation. Each image in a training set is made up of a multitude of pixels, corresponding to
a data point in a high dimensional space. Within this space, underlying features of the set of
images are encoded through dependencies between pixels. Generative networks attempt to model
the characteristics that define a specific set of training images. These models can then be used to
generate images that are faithful emulations of the original training set. Generative networks have
been successfully employed for a variety of applications such as: generating high quality images
that obey fundamental features of training set images; the generation of images from descriptive
text [1]; modelling image captions [2]; producing photo realistic super resolution images [3]; and
generating high resolution images from semantic mapping [4, 5].

Searches for physics beyond the Standard Model often involve looking for rare signatures and
must therefore be able to suppress background processes which can be many orders of magni-
tude more abundant than the signal. In order to optimise the design of the detectors, develop
reconstruction algorithms and understand the efficiency of the selection criteria, large samples of

– 1 –
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simulated background events are required. Dedicated software packages such as GEANT4 [6] model
the transport of particles through the material and the detector response. In many cases, the CPU
requirements to simulate these interactions with matter prohibit the production of large numbers
of background events due to the computationally expensive procedure. Therefore, the computing
demands of the simulation of high energy physics experiments are increasing exponentially [7].
Recent algorithmic improvements that take advantage of high performance computing resources
aim at reducing simulation time, resulting in an order of magnitude increase in speed [8]. This im-
provement is not sufficient to meet the demands of future particle physics experiments, such as those
at the High Luminosity LHC, for large simulation samples [7]. Generative neural networks offer
an alternative approach to simulation by modelling non-analytical functions in a computationally
efficient way [9].

The use of generative networks for particle physics originally focused on image based gen-
eration. Examples of their application include: the development of Location Aware Generative
Adversarial Networks for the production of images of jets [10]; the simulation of reconstructed
cosmic ray induced air showers [11], and of showers in electromagnetic calorimeters [12]; the
fast simulation of Cherenkov detectors [13]. More recently, generative approaches have also been
adopted to simulate the kinematics of final state particles emerging from physical exclusive two-
to-two processes, such as Z or top-quark production at the LHC [14, 15]. In ref. [16], generative
networks were used to simulate the detector reconstruction of the Z → µ+µ− process at the LHC.

This paper describes the use of generative networks to emulate the kinematics of muons
produced through the interactions of high energy protons with the dense target designed for the
Search for Hidden Particles (SHiP) experiment [17]. This approach offers a gain of multiple orders
of magnitude in the computational efficiency of such processes. In contrast to the aforementioned
use of generative networks to approximate a single exclusive process, this work employs four
different generative networks to model the kinematics of muons originating from a multitude of
processes, including muons from secondary interactions or particle showers in SHiP’s target. Large
samples of generative based muons can then be passed through the GEANT4 based simulation of the
rest of the SHiP experiment, offering a precise modelling of its detector response and reconstruction.

This paper is organised as follows: sections 2 and 3 describe the SHiP detector and its simulation
framework respectively; section 4 discusses the generative models used in this analysis, while
section 5 details how these networks are trained and optimised for the SHiP experiment. Section 6
and 7 then present the performance of the generative models in simulating muons produced through
interactions of high energy protons with the SHiP target, compared to the Pythia8 [18] and GEANT4
frameworks. Finally, section 8 discusses the computational time required to produce muons through
generative networks.

2 The SHiP experiment

The Search for Hidden Particles experiment (SHiP) is a proposed experiment that will operate at the
the prospective general purpose fixed target facility at the CERN Super Proton Synchrotron (SPS)
accelerator. The SHiP experiment aims to search for long-lived exotic particles withmasses between
a few hundredMeV/c2 and a fewGeV/c2. These particles are expected to be produced in the decays
of heavy hadrons. The facility is therefore designed to maximise the production rate and detection

– 2 –
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SHiP has received a large amount of attention from the particle physics community. The SHiP
physics paper [2] is a highly cited document (see Figure 1), and many groups continue to explore the sci-
entific potential of the experiment, making detailed predictions for models of feebly interacting particles.
In the wake of the SHiP experiment, several dedicated intensity frontier experiments have been pro-
posed in the recent years: CODEX-b [46], MATHUSLA [47–49], FASER [50–52]. Recognising the
importance of diversifying the search efforts, the CERN Management created in 2016 a dedicated study
group “Physics Beyond Colliders” (PBC) [5]. Searches for heavy neutral leptons, dark photons, dark
scalars, light dark matter, and other super-weakly interacting light particles has also been included in the
scientific goals of many presently running experiments [39, 40, 42–44, 44, 53–67].

1.3 Overview of the SHiP developments and advances since the TP
Despite an active program of searches for HS particles in many experiments, SHiP remains a unique
dedicated experiment capable of reconstructing the decay vertex of an HS particle, measuring its invariant
mass and providing particle identification of the decay products in an environment of extremely low
background. Moreover, SHiP is also optimised to search for LDM through scattering signatures and for
tau neutrino physics.

Since the Technical Proposal the SHiP design went through a significant re-optimisation phase.
Figure 2 shows the layout of the re-optimised SHiP detector. While the overall set-up of the detector
remains unchanged, the geometry and the detector composition has been significantly modified, and
technological studies and test beams have brought maturity to the design. SHiP consists of the proton

Figure 2: Overview of the SHiP experiment as implemented in FairShip.

target, followed by a hadron stopper and an active muon shield that sweeps muons produced in the beam
dump out of acceptance. Since the TP, the target has been extended from ten to twelve interaction lengths
in order to reduce the hadronic shower leakage. Studies were made to minimise the distance between
the target and the SHiP spectrometers to improve the acceptance of the spectrometers, and to reduce the
weight and cost of the muon shield. A significant improvement was achieved by starting the first section
of the muon shield within the hadron stopper by integrating a coil which magnetises the iron shielding
blocks.

The SHiP detector itself incorporates two complementary apparatuses, the Scattering and Neutrino
Detector (SND), and the Hidden Sector (HS) spectrometer. The SND will search for LDM scattering and
perform neutrino physics. It is made of an emulsion spectrometer located inside a single long magnet
with a field above 1.2 T in the entire volume, and a muon identification system. The emulsion spectro-
meter is a hybrid detector consisting of alternating layers of an absorber, nuclear emulsion films and fast
electronic trackers. The absorber mass totals ⇠ 10 tonnes.

The HS decay spectrometer aims at measuring the visible decays of HS particles by reconstructing
their decay vertices in a 50 m long decay volume. In order to eliminate the background from neutrinos

5

Figure 1. SHiP facility layout [19].

efficiency for charm and beauty mesons and their decay products, while maintaining the lowest
possible background rate. The 400GeV/c proton beam extracted from the SPS will be dumped on
a high density W/Mo target with the aim of accumulating 2 × 1020 protons on target during 5 years
of operation. The charm production at SHiP will exceed that of any existing or planned facility. The
SHiP detector, shown in figure 1, incorporates two complementary apparatuses, the Scattering and
Neutrino Detector (SND), and the Decay Spectrometer (DS). The SND will be used to search light
dark matter particles, and perform neutrino physics measurements. The DS aims at measuring the
visible decays of hidden sector particles by reconstructing their decay vertices in a 50 m long decay
volume, making use of a magnetic spectrometer, veto systems and particle identification detectors.
Further details of the design of the detector can be found in ref. [19]. Such a setup will allow the
SHiP experiment to probe a variety of models that predict light long-lived exotic particles.

Since particles originating in charm and beauty meson decays are produced with a significant
transverse momentum with respect to the beam axis,1 the detector is placed as close as possible
to the target. The high flux of muons produced in the target represents a serious background in
searches for hidden particles. A critical component of the SHiP experiment is the muon shield [20],
which deflects muons produced in the target away from the detector placed downstream of the
target. The SHiP detector is designed to reconstruct the exclusive decays of hidden particles and to
reduce the background to less than 0.1 events in the full five year period of operation.

3 The SHiP simulation

The simulation of the various physics processes of the response of the SHiP detector are handled
by the FairShip software suite, which is based on the FairRoot software framework [21].
Within FairShip, primary collisions of protons are generated with Pythia8 and the subsequent
propagation and interactions of particles are simulated with GEANT4. Neutrino interactions are
simulated with GENIE [22], while heavy flavour production and inelastic muon interactions with
Pythia6 [23] and GEANT4. Secondary heavy flavour production in cascade interactions of hadrons
originating from the initial proton collision with the SHiP target is also taken into account [24].
The pattern recognition algorithms used to reconstruct tracks from the hits on the strawtubes of the
DS are described in [25], and the algorithms for particle identification are presented in [26].

1In the SHiP coordinate system the z-axis is along the beam line and the y-axis is pointing upward.

– 3 –
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In order to optimise the design of the active muon shield, and develop the reconstruction
and selection algorithms of the SHiP experiment, a large simulation campaign was undertaken.
Muons produced in the SHiP target were simulated with momentum p > 10GeV/c and a sample
corresponding to approximately 1011 protons on target was produced. In order to enhance this
sample with muons likely to enter the DS, the cross-section of muons produced from decays of
ρ0, ω, η and η′ mesons was enhanced by a factor of 100. Similarly, the cross-section for photon
conversions into muon pairs was also enhanced by the same factor. The full simulation of this
sample, corresponding to a fraction of the 4 × 1013 protons-on-target SPS spill, required months of
running on dedicated CPU farms. An order of magnitude increase of this sample could be achieved
by exploiting symmetries of the system, such as that in the azimuthal plane of the collision. However,
generating even larger samples commensurate to the 2×1020 SPS protons on target expected during
the lifetime of the experiment is impossible using conventional particle simulation methods. The
simulation of the initial proton interaction with the SHiP target, including the subsequent secondary
interactions of particles with the target and the hadron absorber, requires significant computing
power. Methods such as SMOTE [27] and ADASYN [28] could be used to synthesise a sample of
muons that is larger than the original fully simulated sample. These methods rely on producing
muons whose position and momentum vectors take values that lie in between those of existing
muons in the fully simulated sample. Generative adversarial networks can offer an alternative
way of producing orders of magnitude larger samples with minimal expense to the fidelity of the
generated muons.

4 Generative adversarial networks

Neural networks model functions that map an n-dimensional input parameter space into an m-
dimensional output, and are widely employed in the particle physics community. A traditional
neural network is built up of multiple layers: an input layer, one or more intermediate hidden layers,
and an output layer. Layers are built from many individual nodes, and a pattern of connections
joins nodes in adjacent layers. Each node has an associated tunable bias term that acts as an
activation threshold of the node, and each connection has an associated tunable weight representing
the strength of the connection. The simplest pattern of connections between layers is one were the
nodes in one layer are fully connected with nodes in the adjacent layer. In this configuration the
output value of each node is calculated by firstly calculating the sum of the output values of each
node from the previous layer, weighted by the strength of each connection. This weighted sum is
then shifted by the bias term and passed through an activation function that modulates the output
of a node. Depending on the layer that a particular node belongs to, different types of activation
functions can be used. For instance, hidden layers often make use of the so called “leaky rectified
linear unit” function [29] and in the final layer a sigmoid function could be used to transform the
output into a value between 0 and 1. This choice would be appropriate in a binary classification
network, whose output is an estimate of whether the input sample originated from one out of two
classes of samples.

A neural network must be trained in order for it to successfully approximate a function. The
training process involves tuning and updating the weight and bias parameters of the network,
with “supervised learning” being the most traditional approach to training. In the first stage of a
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binary classification problem, labelled data are passed through the network. Output values are then
recorded and compared to the true labels through the use of a loss function. The loss function
provides a quantitative measure of the network’s performance on a set of input training samples.
A large value of the loss function indicates that the network is unable to distinguish between the
two classes of samples. The value of the loss function is used in a process called back-propagation
to update the weight and bias parameters across the network in an effort to improve the network’s
performance [30]. Neural networks are trained in steps, where in each step a small batch of training
data is used, the loss function is then evaluated using this batch of data, and the weight and bias
parameters of the network are updated for the next step.

Generative Adversarial Networks (GANs) employ two competing neural networks, one acting
as a generator and the other as a discriminator [31]. The generator Ĝ is trained to map an input
vector of random noise z to an output generated vector G(z; θg), where θg are parameters of the
network and the dimensionality of z is typically larger than that of G(z; θg). The discriminator D̂,
with trainable parameters θd, is trained to map an input vector x to an output prediction D(x; θd),
which is a value between 0 and 1. In the study presented in this paper G(z; θg) and x represent
the momentum and position vector of the muons. The value of D(x; θd) represents the probability
that x originated from the training sample. A value of D(x; θd) closer to 0 indicates that D̂ expects
the sample to have been generated by Ĝ, whereas if D(x; θd) is closer to 1 D̂ is predicting that the
sample originated from the training data.

The discriminator and generator networks are trained using an iterative approach. Firstly,
the discriminator is trained to distinguish between generated and training samples via a binary
crossentropy loss function Ld. This is a common loss function for training classifier networks and
is defined as

Ld = −[ytrue log(ypred) + (1 − ytrue) log(1 − ypred)], (4.1)

where ytrue takes the values of 1 or 0 for the training or generated label of the sample respectively,
and ypred is the predicted label by the discriminator given by ypred = D(x; θd). The value of this
loss function increases rapidly the further ypred is from the ytrue. Large values of the loss function
bring significant changes in the values of trainable parameters θd in the network.

The generator network is then trained in a stacked model which directly connects the output
xgen of Ĝ to the discriminator prediction D(xgen; θd). This is the adversarial component of the GAN,
it is only the feedback of D̂ that influences the training of Ĝ. The xgen never directly affects the
training of Ĝ. In this stacked model all training parameters of the discriminator, θd, are fixed to the
values obtained from the previous training step of D̂. The trainable parameters, θg, of the generator
are updated based on the loss function, Lg, whose value depends on the output of the discriminator
and is defined as

Lg = − log(D(xgen; θd)). (4.2)

Low values of D(xgen; θd) indicate that the discriminator is confident that the sample xgen originated
from the generator, leading to a large value of Lg. Generated samples that closely resemble
training samples will return higher values of D(xgen; θd) and consequently lower values of Lg as the
discriminator is successfully tricked into guessing a sample originated from the training sample.

The training of the discriminator and generator is repeated using the samples generated by
the previous step. The training of the GAN is completed when generated samples G(z; θg) are
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indistinguishable from training samples. Different approaches are employed to determine the end
of the training. In this paper the metric used to monitor the quality of the training is discussed in
section 5.2. The overall accuracy of the generator depends on how well the discriminator is trained
to distinguish between generated and training samples.

5 GANs for the SHiP experiment

The GAN is trained on a sample of 3.4 × 108 muons passing through the target and hadron absorber
in the full simulation campaign discussed in section 3. As mentioned, this training sample is
artificially enriched with muons from rare processes. Therefore, in order to obtain a physical
admixture of muons from various sources, batches of muons are extracted from the training sample
according to a probability that corrects for this enhancement.

Training is performed on the position r and momentum p vectors of these muons at their point
of production. Therefore, the GAN generates position and momentum vectors of muons at their
production point within the target. Subsequently, they are propagated through the active muon
shield and the Decay Spectrometer, relying on GEANT4 to simulate muon interactions with matter.
This procedure allows for a fast production of large muon samples, while maintaining the flexibility
to optimise the magnetic shield and downstream detector elements of SHiP, as well as the ability to
correct for effects due to the spatial distribution of the proton beam impinging on the target.

Four separate GANs are trained, separated by muon charge and prompt or displaced origin.
The x- and y-coordinates of muons originating from prompt decays of mesons such as the ρ0, φ
and J/ψ are always the same. This is a consequence of the training sample that relies on Pythia
with no smearing of the proton-beam distribution. As such, muons from prompt sources are treated
separately from muons originating from other sources. Therefore, the GANs trained on prompt
muons generate four features (z, p), and the GANs for non-prompt muons generate six (r, p). In this
approach correlations between muons produced in pairs from, for example, vector-meson decays
are ignored. Muons are generated individually and any correlation is assumed to be lost via the
multiple scattering of the muons through the hadron absorber and muon shield.

5.1 Pre-processing

The distribution of the x- and y- coordinates of muons from non-prompt sources is extremely peaked
around the interaction point. Therefore, each value of the x (y) distribution xi (yi) is transformed as

xitrans =

{
−
√
|xi − x | if xi < 0,√
|xi − x | if xi > 0,

(5.1)

before training the GANs. This transformation widens the distributions, which proves easier for the
GANs to model. The distributions of all the input features are then normalised to values between
-1 and 1. This transformation is reversed to obtain physical values of the generated output.

5.2 Figure of merit

An important requirement of the full simulation of the SHiP detector is to accurately model the
flux of muons reaching the Decay Spectrometer. This flux crucially depends on the momentum
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distribution of the muons entering the muon shield of the SHiP experiment. Therefore, muons
generated through the GAN approach must closely match the kinematic distributions of the muons
produced in the target using the full simulation.

In order to optimise the architecture of the networks and to quantify the quality of the training
procedure a figure of merit, FoM, is developed with the following requirements. The FoM must
account for how well the GAN is able to model individual features and the correlations between
them. Furthermore, it is important that the FoM offers an independent metric of the quality of
the training of the GAN since the discriminator and the generator of the GAN improve in tandem
during the iterative training procedure. Finally, the calculation of the FoM must be fast so that it
does not slow down the training process.

During the training process, small test samples are generated to test the progress of the
procedure. As the number of muon features can span a six dimensional space, a small generated
sample of muons results in a sparsely populated feature space. Therefore, traditional binned
goodness of fit methods, such as χ2-tests, break down as almost all bins in this space have a low
occupancy. Boosted decision trees can overcome this issue [32] and satisfy the aforementioned
requirements on the FoM.

A gradient boosted decision tree, BDT, is trained periodically to distinguish between generated
and fully simulated muon samples. The BDT uses 100,000 muons generated from the latest GAN
configuration and 100,000 randomly selected, fully simulated muons. Half of the muons in each
sample are used for training and the other half for testing. The resulting performance of the BDT
is quantified through the area under the receiver operating characteristic curve (ROC AUC). A
generated sample that is indistinguishable from a fully simulated sample would return an ROC
AUC value of 0.5.

5.3 Network optimisation and GAN architecture

All networks are trained with a mini-batch gradient descent approach [33] and at each training step
the networks use a sub-sample of training data. The generators and discriminators of the GANs are
built using only fully connected layers, resulting in a GAN performance that is independent of the
ordering of the muon parameters in the vectors of features that make up the training sample. The
number of nodes, the size of the batch sub-sample, the number of layers and the learning rate of the
networks are coarsely optimised through a grid search over these parameters. The four GANs are
trained until the ROC AUC of the BDT based FoM described in section 5.2 flattens out, and the
selected architecture is that which minimises the ROC AUC of the FoM.

As a result of this optimisation procedure, the GANs for both prompt and non-prompt muons
follow the architecture shown in figure 2. Leaky rectified linear unit activation functions are used
at every hidden layer. The generator and the discriminator have two hidden layers in an inverted
pyramidal structure. For the prompt muon GANs, the number of nodes in each hidden layer of
Ĝ are 1536 and 3072 and for D̂ are 768 and 1536. For the non-prompt GANs, the number of
corresponding nodes are 512 and 1024 for Ĝ and 768 and 1536 for D̂. The input to the generators
relies on sampling from a latent space given by a 100 dimensional unit Gaussian distribution. The
last layer of Ĝ has a tanh activation function in accordance to the transformed range of the input
features described in section 5.1. The last layer of D̂ has a sigmoid activation function providing an
output between 0 and 1 that represents D̂’s judgement on the origin of a sample. Dropout layers with
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Figure 2. Optimal GAN architecture obtained for the simulation of muon background in SHiP. The number
of nodes in each layer for prompt µ and non-prompt µ GANs are given in the text. Arrows indicate the flow
of samples and loss information for each stage of training and generation. The features in the generated and
training samples can take values between -1 and 1 as denoted by the varying shades of grey.

a dropout probability of 0.25 are added between each layer of Ĝ and D̂ to prevent overfitting [34].
Batch normalisation layers are also added between layers of Ĝ [35].

For this study the Adam optimisation algorithm [36] was used in training the networks. Em-
ploying the AMSgrad algorithm with the Adam optimiser increased the stability of our output loss
and FoM progress with training [37]. A momentum parameter of Adam, βl, is used with a value of
0.5 to control the progress of the gradient descent during the training of the network.

6 GAN performance

The progress of the FoM throughout the training of each GAN, as well as the BDT distributions
of the optimal GAN models are shown in figure 3. The final FoM values for the prompt µ+ and
µ− GAN models are 0.57 and 0.54 respectively. Whereas, the non-prompt µ+ and µ− GAN models
return FoM values of 0.60 and 0.59 respectively. A more sophisticated optimisation procedure
of the network architecture, such as that suggested in [38], could result in an even better GAN
performance.

In order to further visualise the level of agreement between the generated and fully simulated
samples, a physical sample of GAN based muons is produced by combining the output from each of
the four generators according to the expected production fractions of prompt and non-prompt muons
in the simulation. Figure 4 compares the one- and two-dimensional distributions of each unique
pair of features between fully simulated and generated muons. The GANs can overall reproduce
the correct correlations between features, although the tails of the (x, y, z) position distributions
are underestimated.
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Figure 3. (a) Progress of the FoM ROCAUC value throughout the training of all 4 GANs, raw and smoothed
data is displayed. Dashed lines indicate the FoM AUC ROC values of models chosen to generate muons in
this paper. Although models were trained past this point this was the lowest FoM AUC ROC value obtained,
(b) Distributions of the figure of merit BDT response for both fully simulated and GAN-based muon samples
for prompt and non-prompt µ− and µ+.

Modelling of the momentum (p) and transverse momentum (pT) plane accurately is crucial
in order to obtain the correct flux of muons reaching the SHiP Decay Spectrometer. Figure 5
compares the (p, pT) plane between the fully simulated and generated samples. The GANs can
largely reproduce the correlations between these features, however they particularly underestimate
the number ofmuonswith pT > 3GeV/c. The effect of this mismodelling on the rate and kinematics
of muons reaching the Decay Spectrometer is discussed in section 7. To correct the momentum
distribution of the generated muons, the three-dimensional (px , py , pz) distributions of the fully
simulated and generated muons are each fit using a three-dimensional Kernel Density Estimator,
for example see ref. [39]. For each generated muon, an individual correction weight is derived
by taking the ratio between fully simulated over the fully generated KDEs at the corresponding
(px , py , pz) muon coordinate.

This generative approach accurately models the production of muons in the SHiP target, as
long as the kinematic distributions of the muons lie within the phase space covered by the fully
simulated training sample. Therefore, samples of muons produced through the GAN are designed
to compliment, rather than replace, existing fully simulated samples. By generating vast samples
of muons through this generative approach, a better understanding of the performance of the muon
shield and the detector response for muons that lie within the kinematic region of the fully simulated
sample can be obtained.
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Figure 4. Two-dimensional distributions of all unique combinations of muon features for GAN based
(upper-half) and fully simulated (lower-half) muons produced in the SHiP target. One-dimensional log scale
comparisons of each feature are presented along the diagonal.

7 Reconstructing GAN generated muons

The generated muons are processed using FairShip to simulate their passage through the magnetic
shield and the response of the downstream SHiP detector. Figure 6 shows the p vs pT distribution
of reconstructed muon tracks in the Decay Spectrometer of SHiP resulting from the GAN based
muon sample. A comparison to the reconstructed muon tracks originating from the full simulation
sample is also shown. The effect of the residual correction to the kinematics of the GAN based
muon sample discussed in section 6 is found to have a small effect.

Figure 7 shows the momentum distributions at the production point of the muons, for muons
that are reconstructed in the DS. The GAN based and fully simulated muons display similar features
in the p vs pT plane. The fully simulated sample exhibits localised hot-spots. These are due to the
use of event weights that account for enhancement factors of particular processes that give rise to
muons likely to enter the Decay Spectrometer as discussed in section 3.
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in the Decay Spectrometer. The distributions of both GAN based and fully simulated muons are also shown
together with the effect of the correction to the residual mismodelling of the muon kinematics from the GAN
based sample. The distributions are normalised such that they correspond to the same number of protons
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The rate of muons that survive the magnetic shield and are reconstructed in the Decay Spec-
trometer is given in table 1. Both the full rate, and the rate of muons with an initial (p, pT)
distribution corresponding to the upper region of figure 7 agree when comparing the GAN based
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and fully simulated muon samples. The correction to the kinematic distributions of the GAN based
muons discussed in section 6, changes the rate of generated muons entering the Decay Spectrometer
by ∼ 4%.

Table 1. Rates of reconstructed muons in the Decay Spectrometer. The uncertainty on the GAN based muons
reflects the statistical uncertainty of the generated muon sample, given the model described in section 6.

Approach Full Rate (kHz) Upper Region Rate (kHz)
Full simulation 13.9 ± 3.4 4.7 ± 2.2

GAN 15.8 ± 0.3 5.5 ± 0.2
GAN (weighted) 15.2 ± 0.5 4.7 ± 0.4
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Figure 7. Initial momentum of muons passing through the SHiP active muon shield with well reconstructed
tracks in the Decay Spectrometer. Full simulation data is presented on the left and generated data on the
right. The dashed line indicates the upper region analysed in table 1.

8 Benchmarking

With a small expense in the fidelity between the generated and fully simulated sample, the generative
approach can produce samples of muons at greater speed. Generating samples of muons fromGANs
on a GPU provides a speed-up of O(106) relative to the full Pythia8 and GEANT4 proton-on-target
simulation. This test was performed using Keras(v2.1.5) on a TensorFlow backend (v1.8.0) on
a single Nvidia Pascal P100 GPU card. This speed-up factor includes all the computations
required to transform the output features of the generator into physical values. Generating muons
using the GAN approach on a CPU is an order of magnitude slower than on a GPU.

Table 2 summarises the results of this performance test. The gain in speed using the generative
approach is partly due to the small production cross-section of muons with p > 10GeV/c, requiring
O(103) proton-on-target interactions to be simulated through Pythia8 in order to generate a
single muon.
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Table 2. Summary of benchmarking results.

Target simulation method Muons produced in 5 Time to simulate single
minutes muon (s)

Pythia8 and GEANT4 ∼ 1 1.1 × 10−1

GAN (CPU) 7.5 × 105 4.0 × 10−4

GAN (GPU) 3.5 × 106 8.6 × 10−5

9 Conclusion

This paper demonstrates the success of using a modern machine learning method to approximate
the output of a complex and computationally intensive simulation of muons originating from SPS
protons impinging on the target of the SHiP experiment. The GAN models presented in this paper
produce samples that emulate the characteristics of the fully simulated sample and can approximate
the kinematic correlations of themuons produced in the SHiP target. Furthermore, muons generated
by theseGANs correctly describe the expected flux and kinematic distributions ofmuons that survive
the magnetic shield and are reconstructed in the Decay Spectrometer of the SHiP detector.

The generative models developed in this paper can produce muons O(106) times faster than
the current Pythia8 and GEANT4 simulation of the SHiP target. However, the muons produced
by the generative model are only representative of regions of phase space populated by the full
simulation of the target. These generative models are not capable of accurately extending the
tails of their training distributions, and are not intended to replace the fully simulated background
sample. Generated muons can be used in parallel to complement ongoing background and detector
optimisation studies, where this approach can offer a vast increase in the sample size of statistically
limited muon background studies at SHiP. Finally, the generative approach presented in this paper
can be used to produce muons according to a model trained directly on real data, such as that
from the recent muon-flux beam-test campaign of the SHiP collaboration [40]. Such an approach
circumvents the challenge of tuning the multitude of parameters that control the simulation in order
to match the data.
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