001     910584
005     20230123110710.0
024 7 _ |a 10.1016/j.neubiorev.2021.12.035
|2 doi
024 7 _ |a 0149-7634
|2 ISSN
024 7 _ |a 1873-7528
|2 ISSN
024 7 _ |a 2128/32476
|2 Handle
024 7 _ |a 34968523
|2 pmid
024 7 _ |a WOS:000762004800006
|2 WOS
037 _ _ |a FZJ-2022-03962
082 _ _ |a 610
100 1 _ |a Torske, A.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Localizing the human brain response to olfactory stimulation: A meta-analytic approach
260 _ _ |a Amsterdam [u.a.]
|c 2022
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1668077525_3328
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The human sense of smell and the ability to detect and distinguish odors allows for the extraction of valuable information from the environment, thereby driving human behavior. Not only can the sense of smell help to monitor the safety of inhaled air, but it can also help to evaluate the edibility of food. Therefore, in an effort to further our understanding of the human sense of smell, the aim of this meta-analysis was to provide the scientific community with activation probability maps of the functional anatomy of the olfactory system, in addition to separate activation maps for specific odor categories (pleasant, food, and aversive odors). The activation likelihood estimation (ALE) method was utilized to quantify all relevant and available data to perform a formal statistical analysis on the inter-study concordance of various odor categories. A total of 81 studies (108 contrasts, 1053 foci) fulfilled our inclusion criteria. Significant ALE peaks were observed in all odor categories in brain areas typically associated with the functional neuroanatomy of olfaction including the piriform cortex, amygdala, insula, and orbitofrontal cortex, amongst others. Additional contrast analyses indicate clear differences in neural activation patterns between odor categories.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Koch, K.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Eickhoff, Simon
|0 P:(DE-Juel1)131678
|b 2
|u fzj
700 1 _ |a Freiherr, J.
|0 P:(DE-HGF)0
|b 3
|e Corresponding author
773 _ _ |a 10.1016/j.neubiorev.2021.12.035
|g Vol. 134, p. 104512 -
|0 PERI:(DE-600)1498433-7
|p 104512 -
|t Neuroscience & biobehavioral reviews
|v 134
|y 2022
|x 0149-7634
856 4 _ |u https://juser.fz-juelich.de/record/910584/files/Localizing_Olf_Cortex_Meta_Analysis_NBBR_Torske_2021.pdf
|y Published on 2021-12-27. Available in OpenAccess from 2022-12-27.
909 C O |o oai:juser.fz-juelich.de:910584
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131678
910 1 _ |a Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-31
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-31
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-09
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1120
|2 StatID
|b BIOSIS Reviews Reports And Meetings
|d 2022-11-09
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROSCI BIOBEHAV R : 2021
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-09
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-09
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEUROSCI BIOBEHAV R : 2021
|d 2022-11-09
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21