Sex-related differences in cerebral A1 adenosine receptor availability in the human brain

Anna L. Pierling¹, Eva-Maria Elmenhorst², Denise Lange², Eva Hennecke², Diego Baur³, Simone Beer¹, Tina Kroll¹, Bernd Neumaier⁴, Daniel Aeschbach^{2,5}, Andreas Bauer^{1,6}, Hans-Peter Landolt³, David Elmenhorst¹

¹Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, 52425 Jülich, Germany ²Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany ³Institute of Pharmacology & Toxicology, University of Zurich, Zurich, Switzerland ⁴Institute of Neuroscience and Medicine (INM-5), Forschungszentrum Jülich, 52425 Jülich, Germany ⁵Division of Sleep Medicine, Harvard Medical School, Sleep Division, Boston 02115, MA, USA ⁶Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany

Introduction:

Sex differences have been reported in terms of sleep duration, sleep efficiency, and sleep phases. Adenosine and its cerebral receptors, A_1 adenosine receptor (A_1AR) and A_{2A} adenosine receptor ($A_{2A}AR$), play an important role in homeostatic sleep-wake regulation. During wakefulness adenosine concentration increases, whereas it decreases during sleep. We investigated sex differences in the adenosine A_1AR availability in human volunteers.

Methods:

We used the radioligand [18 F]CPFPX combined with positron emission tomography to quantify brain A $_1$ AR availability in 50 volunteers (20 female, 30 male, 28 ± 5 years). Following a one-week ambulatory sleep satiation protocol (9 hours time in bed, TIB), scans were performed under well-rested conditions after at least three nights in the sleep lab with 8 hours TIB. The A $_1$ AR availability was estimated in terms of the [18 F]CPFPX binding potential (BP_{ND}) via the Logan's reference tissue model (t^* = 30 min) based on average k2', resulting from the simplified reference tissue model. The cerebellum was used as a reference region. With independent t-tests we compared BP_{ND} between males and females.

Results:

Grey matter was subdivided into 12 regions. BP_{ND} was regionally 12-29 % higher in females than in males. Notably, in females, BP_{ND} was significantly higher in all brain regions indicating higher A_1AR availability in females. The differences in BP_{ND} were particularly noticeable in regions which belong to the limbic system or are closely associated with it, such as anterior cingulum (0.57 \pm 0.11 in females, 0.45 \pm 0.11 in males), hippocampus (0.55 \pm 0.08 in females, 0.43 \pm 0.11 in males), and amygdala (0.51 \pm 0.10 in females, 0.41 \pm 0.11 in males).

Conclusion:

Females compared to males have a higher A₁AR availability in the human brain already under well-rested conditions, which could explain the known sex differences in habitual sleep duration.

Acknowledgment:

We thank all volunteers for participating in the studies, and Sylvia Köhler-Dibowski from the Forschungszentrum Jülich and Annette von Waechter of the German Aerospace Center for their excellent technical assistance and support in study conductance.