001     910595
005     20230123110710.0
024 7 _ |a 10.5334/jors.394
|2 doi
024 7 _ |a 2128/33071
|2 Handle
037 _ _ |a FZJ-2022-03973
082 _ _ |a 004
100 1 _ |a Rosjat, Nils
|0 P:(DE-Juel1)164124
|b 0
|e Corresponding author
245 _ _ |a DST (Dynamic Synchronization Toolbox): A MATLAB Implementation of the Dynamic Phase-Locking Pipeline from Stimulus Transformation into Motor Action: Dynamic Graph Analysis Reveals a Posterior-to-Anterior Shift in Brain Network Communication of Older Subjects
260 _ _ |a London
|c 2022
|b Ubiquity Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1670930840_17645
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The Dynamic Synchronization Toolbox allows the calculation of dynamic graphs based on phase synchronization in experimental data. This enables an analysis of the time-development of network connectivity between multiple recording sites (e.g. in electroencephalography (EEG) or magnetoencephalography (MEG) data) with a high temporal resolution. Optionally, the toolbox offers the possibility to compute several graph metrics (such as cluster dynamics, node degree, HUB nodes) via the Brain Connectivity toolbox.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Daun, Silvia
|0 P:(DE-Juel1)162297
|b 1
|u fzj
773 _ _ |a 10.5334/jors.394
|g Vol. 10, p. 8
|0 PERI:(DE-600)2740435-3
|p 8
|t Journal of Open Research Software
|v 10
|y 2022
|x 2049-9647
856 4 _ |u https://juser.fz-juelich.de/record/910595/files/Invoice_UP-5823.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/910595/files/394-5922-1-PB.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/910595/files/Post-print.pdf
909 C O |o oai:juser.fz-juelich.de:910595
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)164124
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)162297
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
914 1 _ |y 2022
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-08-28
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-06-01T06:50:39Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-06-01T06:50:39Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2021-06-01T06:50:39Z
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21