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Abstract
The Dynamic Synchronization Toolbox allows the calculation of dynamic graphs
based on phase synchronization in experimental data. This enables an analysis of
the time-development of network connectivity between multiple recording sites (e.g.
in electroencephalography (EEG) or magnetoencephalography (MEG) data) with a
high temporal resolution. Optionally, the toolbox offers the possibility to compute
several graph metrics (such as cluster dynamics, node degree, HUB nodes) via the
Brain Connectivity toolbox.
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Introduction
The Dynamic Synchronization Toolbox (DST) is an implementation of the pipeline
used in our previous article (Rosjat et al. (2021)) to calculate phase connectivity
based dynamic graphs. This study dealt with the analysis of EEG data recorded
during externally triggered finger movements in young and older subjects. We
used this pipeline to get in depth information on the connectivity dynamics during
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movement planning and movement execution and especially how these dynamics are
changed in healthy aged persons. For this purpose it was necessary to use a non-
static connectivity measure which can detect instantaneous changes in the coupling
of the signals. Compared to other toolboxes that allow connectivity analyses of
EEG signals, we focused here on ensuring the highest possible temporal resolution.
Other toolboxes such as Dynamic Causal Modeling (DCM, Kiebel et al. (2009)) as
a function of the Statistical Parametric Mapping toolbox (SPM, Ashburner et al.
(1994)) for instance, require static connectivity and thus do not allow for time course
analysis. Also, connectivity approaches, like Granger Causality (Guo et al. (2010))
or Mutual Information (Pereda et al. (2005)), assume stationary signals and thus
have a fairly low temporal resolution.
The Brain Connectivity Toolbox (BCT, Rubinov and Sporns (2010)) comes into
play after connectivity has been determined to perform further network-related
calculations. It is a very powerful toolbox that includes different graph theoretic
measures. For this reason, we also use this functionality for the calculation of
network properties in our toolbox.
The scripts presented here have been generalized as much as possible to allow ap-
plication not only to EEG data as in our prior publication, but to a wide variety
of data as long as they were transformed to phase space. Thereby, this toolbox has
a high reuse potential also in other fields of research, e.g Geophysics, Geomorphol-
ogy, Systems Biology, Ecology or Social Network Sciences, that deal with dynamic
connectivity, i.e. interactions of signals at different ’recording sites’.

Implementation and architecture
The toolbox presented here provides a MATLAB implementation of the pipeline for
creating and graph theoretically analyzing dynamic networks as has been introduced
in Rosjat et al. (2021). The pipeline consists of three major steps (Fig. 1): First,
phase-locking values between two measuring sites, e.g. electrodes, are computed
relative to a defined baseline period, second, the calculated connectivities are used to
define dynamic graphs at the group level by testing for significant increase compared
to baseline using t-tests and last, the dynamic graphs are analyzed using graph-
theoretic measures from the BCT (Rubinov and Sporns (2010)).
In the first step, the input data, that has been epoched and transformed to phase
space prior application, undergoes a connectivity analysis based on the relative
phase-locking value (rPLV), which is defined as follows:

PLVm,n(f, t) =
1

N

N∑
k=1

exp(i(φmk
(f, t)− φnk

(f, t))) (1)

rPLVm,n(f, t) =
PLVm,n(f, t)− PLVm,n(f)

PLVm,n(f)
(2)

where t denotes time, f frequency and φmk
in Eq. (1) the phase of the signal at

measuring site m in the k-th trial. N is the total number of trials, i.e. repeating
segments of measurements, and i is the imaginary unit. In Eq. (2) the previously
calculated PLV is normalized relative to the mean PLV in a predefined baseline
period.
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Figure 1: Schematic drawing of the three software parts: connectivity, statistics
and graph measures.

In the second step, t-tests are used to define periods of significally increased phase-
connectivity for each signal pair. In the toolbox we included the options to compare
the rPLV against zero or against an artificially computed baseline signal consisting
of random noise with the same mean and standard deviation as the baseline period
and of the same length as the test interval. We further implemented three options
for dealing with multiple comparisons: (i) no correction (for simple checks), (ii) false
discovery rate (FDR) correction for single pairs and (iii) FDR correction pooled over
all timepoints and signal pairs. A connection is assigned between a signal pair if
the rPLV is significantly greater than zero or the artificial baseline.
Dynamic graphs were then defined as the ordered set G(t) = {Gt|t ∈ [1, · · · , T ]}
of binary undirected graphs Gt = (V,Et), where the graph G is defined by a set of
vertices V and edges Et : V × V → R, for each point in time t.
In the last step, we added the option to compute several graph measures from the
BCT. These are, the node degree (i.e. the number of connections of a node), a
Louvain community detection (also called clustering), the node flexibility (i.e. how
often the nodes switch between the clusters) and the HUB nodes (i.e. the most
influencial nodes) of the networks. We determined all of these measures at all given
points in time to obtain their overall dynamics. For a better overview, we added
an optimization step for community detection. Here, we always used the previous
cluster configuration as the initial condition for the following community detection.
Additionally, we post-hoc assigned the label for each community, minimizing the
number of label switches between time points, which prevents the same cluster from
being assigned different cluster labels at consecutive time points.
A more detailed description of the methods used can be found in Rosjat et al.
(2021).
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Figure 2: Flowchart depicting the logical sequence of the dynamic graph calcula-
tions.

Script architecture

The DST is fully implemented in MATLAB. It includes a main directory consist-
ing of the master function dynamic_synchronization_toolbox_function.m , a

documentation file readme.m and subfolders for data and scripts.
The master script is used to specify various options used for further processing.
In this script we define the subject IDs, which will afterwards be loaded from the
subfolders of the same name in the subject folder, e.g.:

subjects =[’Sub01 ’;’Sub02 ’];

These subject folders are organized in a BIDS (Brain Imaging Data Structure;
Gorgolewski et al. (2016); Pernet et al. (2019)) like fashion, i.e. each subject has
its own subfolder within the data folder. These subfolders then consist of a mat-file
containing the epoched EEG data transformed to phase space and a trial definition
file (in case of multiple experimental conditions).
Within the master script, an options structure is defined which sets several options
for calculating the rPLV in step 1. See Table 1 for all available options. The rPLVs
are then computed by calling the function rplv_func.m (Fig. 2, step 1).
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option type description

electrodes integer list subset of electrode indices of interest
freqs integer list frequency range for time-frequency decomposition

baseline integer (begin, end) of time-interval for relative baseline
multiple conds boolean single (false) or multiple (true) conditions
switch hands boolean enables mapping of electrodes to other hemisphere
channels new integer list new order of electrodes for mapped condition
channels old integer list old order of electrodes for mapped condition

contrast boolean enabling contrasting conditions
contrast conds integer list indices of two conditions to contrast

avg freqs integer list frequencies of interest for averaging

Table 1: Options for rPLV calculation in step 1.

option type description

pid string multiple comparisons ’original’, ’individual’, ’uncorr’
pID fix double fixed p-value for corrected stats

p fix double fixed p-value for uncorrected stats
q FDR double q-value for FDR-correction
comp string type of comparison ’baseline’ or ’zero’

test interval start integer start of testinterval in ms
test interval end integer end of testinterval in ms

baseline start integer start of baseline in ms
baseline end integer end of baseline in ms

task integer definition of task by id (contrast appears last)
contrast boolean enabling contrasting conditions

time integer list sampling timepoints
sampling rate integer sampling rate of the data

Table 2: Options for statistical testing and dynamic graph construction in step 2.

Furthermore, we define the stats structure which sets several options for sta-
tistical analysis of the rPLV in step 2. See Table 2 for all available options. As
described above, we included three options for multiple comparison, which can
be set by stats.pid . The corresponding thresholds for t-tests and FDR cor-
rection can be defined in this structure. Additionally, this structure includes an
option stats.comp to select the desired statistical comparison, i.e. against an

artificial baseline (described above) or against zero. Subsequently the function
stats_rplv.m is called to compute the significant edges and construct the dy-

namic graphs (Fig. 2, step 2).
The optional calculation of node degree, community detection, node flexibility and
HUB nodes can be altered by adjusting the variable graph_measures = True or False

(Fig. 2, step 3).
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Script application

The first step for using the DST pipeline is to arrange the preprocessed data in a
BIDS-like data structure in the Data subfolder. The data set of each subject should
be stored in a subfolder SubID of the Data folder and labelled SubID_eeg.mat .

Each preprocessed (e.g. transformed to time-frequency phase-space) data set has
to be stored in a mat-file with the dimensions [channels × frequencies × time-
points × trials]. In order to use the pipeline for multiple experimental conditions
an additional file called SubID_trialselection.mat with dimensions [Trials ×
Conditions] giving boolean information about the condition of each trial is needed.
In the second step, the user has to set the options for the calculation of the syn-
chronization metric in structures (as defined above) options , stats and graphs

as well as a list of subject IDs and the path to the subject data subfolder. In the
last step, the main function dynamic_connectivity_toolbox_function.m has to
be executed with the previously defined options. This will at the end produce the
following output variables:

rplv: relative phase-locking value for each dataset in a cell {num, subjects, 1},
each cell stores the rPLV with dimensions [time, channel, channel, conditions].

trials: number of trials in each experimental condition and subject.

rplv mean: group average of rPLV in [time, channel, channel, conditions].

sig ti FDR: significant timepoints after statistics and multiple comparisons as a cell
{channel, channel}.

xa: list of significant intervals [intervals, 3] with information about start time-
point, stop timepoint and the amount of timepoints to the next interval for
each channel pair stored in a cell {channel, channel}.

length: list of length of significant intervals for each channel pair stored in a cell
{channel, channel}.

The optional graph metric generates the following additional outputs:

Agg: aggregated graph showing the frequency of all connections over the whole
interval in a matrix [channel, channel].

bet: temporal betweenness centrality in a matrix [timepoint, channel].

hub: temporal hub nodes, i.e. nodes with highest betweenness centrality, in a
matrix [timepoint, 2].

clusters: clusters assignment for each channel and timepoint [channel, timepoints].

node flex: node flexibility for each channel stored in a matrix [2, channel].

deg: each channels node degree over time in a matrix [timepoint, channel].
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Quality control
To ensure sufficient quality control, two sample datasets of artificial data each con-
sisting of four conditions were added to the scripts, one exhibiting a high degree
of connectivity and the other a low degree of connectivity. The data are created
by running the script sample_data_creation.m located in the ”Data” subfolder.

The data consists of two identical subjects with the dimensions [61 channels, 48 fre-
quencies, 800 timepoints, 100 trials]. A set of 27 channels is perfectly phase-locked
after artifical stimulation in the time-interval [300:500] for trials [1:25] and [51:75].
In contrast, the remaining channels are phase-locked in the same interval, but for
trials [26:50] and [76:100]. We also provide two figures depicting the rPLV for all
possible connections: First, the connectivity is shown for all four conditions in the
originally created dataset (File rplv sampledata original.png) and second, there is
a version after switching a set of electrodes and merging conditions 1 with 2 and
3 with 4 (File rplv sampledata merged.png). In the first case the contrast of con-
ditions 1 and 2 will show a huge difference in rPLV between two distinct sets of
measurement sites (e.g. left and right hemispheric electrodes). In the second case
this difference should disappear since those two groups were swapped in the second
condition leading to equal experimental conditions. These figures are located in the
folder ”Quality control”. This makes it possible to check if the definition of the
networks was successful. In the following, this data will also be used to ensure the
correct integration of the scripts from the BCT.
The data associated with the original article, analyzed with the toolbox, has been
made available Rosjat et al. (2020).

(2) Availability

Operating system
DST is a pure MATLAB code, and should function on all operating systems in
which MATLAB is supported.

Programming language
MATLAB (developed in vR2018b).

Additional system requirements
None.

Dependencies
The graph analysis is based on significant edges which depend on the Statistic tool-
box (Mathworks Inc. (2019)). The optional calculation of dynamic graph metrics
makes use of the Brain Connectivity Toolbox (Rubinov and Sporns (2010)).

List of contributors
Nils Rosjat wrote the software and is its current maintainer. Silvia Daun: Concep-
tualization, Supervision, Project administration, Funding acquisition

Support
Support requests of any kind are preferably to be submitted in GitHub as an issue
or sent to the corresponding author Nils Rosjat via email.
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Software location:
Archive Jülich-DATA

Name: Dynamic Synchronization Toolbox
Persistent identifier: https://doi.org/10.26165/JUELICH-DATA/BRXHZ9
Licence: BSD 3-Clause
Publisher: Nils Rosjat
Version published: v1.0
Date published: 02/09/21

Code repository Github

Name: Dynamic Synchronization Toolbox
Persistent identifier: https://github.com/nrosjat/dynamic-synchronization-
toolbox
Licence: BSD 3-Clause
Date published: 02/09/21

Language
English.

(3) Reuse potential
This toolbox is of great importance for researchers interested in investigating dy-
namic connectivity patterns in EEG data based on phase-synchronization. Even
though the scripts were developed for a specific analysis of EEG data and per-
formed at the electrode level, they could also be useful for researchers interested in
performing source-based connectivity analyses or using different modalities such as
MEG. Since the only requirement for the input data of the toolbox is that the sig-
nals have to be phase-transformed, the analysis can be applied to any signals with
expected phase-locking between different recording sites. Additionally, we gener-
alized the scripts as much as possible, not focusing too much on modality specific
features, to increase its reuse potential even further. In the current version the
connectivity is calculated based on rPLVs. Here, we presented the scripts as they
were used for our prior connectivity analysis (Rosjat et al. (2021)) which focused
on the use of rPLV for connectivity analysis. However, the connectivity measure
can easily be replaced by other methods, e.g. phase-lag index, coherence, corrected
imaginary part of phase-locking value, amplitude based connectivity etc., which
will be implemented as an option in future versions. Instead of performing group
level statistics one might also use different statistical approaches, e.g. phase-locking
statistics (Lachaux et al. (1999)), or thresholding techniques, i.e. fixed amount of
edges or ratio of strongest connections, to define subject specific individual graphs.
This might be of special interest for patient-related research where only few subjects
are available or subjects are too diverse to be analyzed on a group level. These tech-
niques can also be applied in the case of continuous recordings, e.g. resting state
(M/EEG) data, here, however, the connectivity measure has to be adjusted to ac-
count for single-trial connectivity instead of the inter-trial connectivity that was
used here.
This toolbox provides a pipeline beginning at the level of phase-transformed data,
constructing dynamic connectivity networks using statistical analysis and ending
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with the application of certain graph metrics from the BCT (Rubinov and Sporns
(2010)). The format of the generated output makes it easy to incorporate even
more sophisticated graph metrics if needed. Therefore, this toolbox provides a
good starting point for researchers studying phase-connectivity in a wide range of
signals since it provides a pipeline for their entire analysis.
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