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a b s t r a c t 

Ongoing brain function is largely determined by the underlying wiring of the brain, but the specific rules gov- 

erning this relationship remain unknown. Emerging literature has suggested that functional interactions between 

brain regions emerge from the structural connections through mono- as well as polysynaptic mechanisms. Here, 

we propose a novel approach based on diffusion maps and Riemannian optimization to emulate this dynamic 

mechanism in the form of random walks on the structural connectome and predict functional interactions as a 

weighted combination of these random walks. Our proposed approach was evaluated in two different cohorts of 

healthy adults (Human Connectome Project, HCP; Microstructure-Informed Connectomics, MICs). Our approach 

outperformed existing approaches and showed that performance plateaus approximately around the third ran- 

dom walk. At macroscale, we found that the largest number of walks was required in nodes of the default mode 

and frontoparietal networks, underscoring an increasing relevance of polysynaptic communication mechanisms 

in transmodal cortical networks compared to primary and unimodal systems. 

1

 

f  

p  

(  

S  

m  

M  

v  

t  

M  

e  

t  

i  

b

 

h  

l  

t  

r  

n  

t  

I  

c  

p  

2  

d  

e  

r  

(  

M  

e  

o  

r  

a  

h

R

A

1

(

. Introduction 

Neuroscience has increasingly embraced a paradigm shift, away

rom focusing on single regions towards conceptualizations that em-

hasize the analysis of the brain as a complex, interconnected network

 Avena-Koenigsberger et al., 2018 ; Bassett et al., 2017 ; Bullmore and

porns, 2009 ; Fornito et al., 2013 ; Sporns et al., 2005 ). With progress in

ultimodal imaging and modelling, in particular advances in diffusion

RI acquisition and tractographic reconstructions, it is now possible to

isualize the structural connectome (SC), as a representation of struc-

ural wiring with increasing biological validity ( Hagmann et al., 2007 ).

apping the SC has critical appeal to network neuroscience, as it is gen-

rally considered to provide the physical wiring diagram of the brain

hat shapes and constrains ongoing brain function and dynamics, which

n turn are thought to underlie the emergence of cognitive functions and

ehavior ( Bressler and Menon, 2010 ). 

Although a fundamental goal of systems neuroscience is to identify

ow structure gives rise to ongoing brain function, establishing a direct
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ink between the SC and the functional connectome (FC) as a representa-

ion of ongoing signal interactions remains an open problem. While neu-

al signals can be immediately transmitted between anatomically con-

ected locations in the SC, the principles governing the flow of informa-

ion between different unconnected regions of the brain remain elusive.

n both humans and non-human primates, the strength of a structural

onnection linking two brain regions has shown to be a relatively robust

redictor of the strength of their functional interaction ( Honey et al.,

009 ; Shen et al., 2012 ; Skudlarski et al., 2008 ). Nonetheless, the pre-

ictive accuracy of the SC is far from perfect, especially when aiming to

xplain the functional connectivity between anatomically unconnected

egions, which may be mediated by polysynaptic communication paths

 Damoiseaux and Greicius, 2009 ; Goñi et al., 2014 ; Honey et al., 2009 ).

oreover, the strength of the structure-function relationship has gen-

rally been recognized to vary across the brain, with a tight coupling

f structural and functional connectivity profiles in unimodal sensory

egions that is gradually relaxed in higher-order transmodal association

reas, notably regions of the default mode and frontoparietal networks

 Baum et al., 2020 ; Vázquez-Rodríguez et al., 2019 ). 
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Several approaches have been proposed to explain the map-

ing between structural and functional networks, including statis-

ical associative techniques ( Mi š i ć et al., 2016 ), biophysical mod-

ls ( Breakspear, 2017 ; Deco et al., 2013 ; Honey et al., 2009 ;

obinson, 2012 ; Wang et al., 2019 ), structural connectome harmonics

 Abdelnour et al., 2014 , 2018 ; Becker et al., 2018 ; Rosenthal et al.,

018 ), network communication models ( Avena-Koenigsberger et al.,

018 ; Bazinet et al., 2021 ; Goñi et al., 2014 ; Mi š i ć et al., 2015 ),

nd deep learning methods ( Rosenthal et al., 2018 ; Sarwar et al.,

021 ). Among these approaches, those based on the eigenvectors on

he SC and network communication have attracted mounting interest

ecently ( Abdelnour et al., 2018 ; Atasoy et al., 2016 ; Becker et al.,

018 ; Gabay et al., 2018 ; Surampudi et al., 2018 ; Tewarie et al., 2020 ;

ang et al., 2017 ). These approaches incorporate polysynaptic com-

unication mechanisms through more than one structural connection

o account for the flow of information between not only directly con-

ected regions but also intermediary pathways ( Atasoy et al., 2016 ;

eguin et al., 2020 ; Suárez et al., 2020 ). By working on the structural

mbeddings, network communication can be modelled in a straight-

orward manner based on random walks on the SC ( i.e., signal dif-

usion through the entire SC) or as combinations of the structural

igenvectors ( Tewarie et al., 2020 ). As such, these techniques allow

or the modelling of both mono- as well as polysynaptic communica-

ion mechanisms to incorporate increasingly high-order structural in-

eractions, which may ultimately reconstruct a dense FC from a rel-

tively sparse SC representation ( Honey et al., 2009 ; Suárez et al.,

020 ). 

Here, we propose a novel approach to predict FC from SC at the

ingle-subject level that models polysynaptic signaling mechanisms via

he diffusion maps framework ( Coifman et al., 2005 ; Coifman and La-

on, 2006 ). In particular, we formulate the problem of predicting FC

rom SC as a kernel fusion method, where each kernel can be de-

icted as a putative intermediate state while the brain is propagating

nformation through the static white matter fibers. These multi-scale

iffusion kernels are implemented as random walks on the structural

igenspace, by using the diffusion maps framework to identify low di-

ensional components describing variance in SC. As the length of the

andom walks increases, information is propagated through increasingly

onger indirect paths. Since the functional diffusion coordinates we at-

empt to synthesize may have a different orientation than their anal-

gous structural coordinates, we need a transformation to align their

ow-dimensional representations in manifold space. To do so, we for-

ulate our task as a Riemannian optimization problem over the product

anifold of rotations ( Absil et al., 2009 ; Hu et al., 2020 ), where each

otation is used to identify the optimal paths of a specific length, and

ubsequently build the corresponding intermediate diffusion kernels. Al-

hough polysynaptic communication mechanisms are extensively used

o explain FC, by learning the rotation matrices in our approach, in-

ormation is not indiscriminately spread through the SC, but is rather

ropagated in an informed way through the optimal paths learned from

he training data. The proposed approach is illustrated in Fig. 1 . The

orkflow was evaluated on the prediction of FC from SC at the indi-

idual level rather than group level. Results are reported for two dif-

erent datasets, namely: 326 unrelated subjects from the Human Con-

ectome Project ( Van Essen et al., 2013 ) and 50 unrelated subjects

rom the Microstructure-Informed Connectomics dataset ( Royer et al.,

021 ). We used the proposed approach to: (i) study the relationship

etween the length of the random walks ( i.e., length of indirect paths

etween brain regions) and prediction accuracy (quantified via Pear-

on’s correlation coefficient), (ii) test the contribution and identify the

eighting schemes to define the SC that best explain the observed

rain function, (iii) perform region- and network-specific analyses of

C prediction as a function of path length, and (iv) compare the predic-

ion performance of the proposed approach with several state-of-the-art

ethods. 
2 
. Materials and methods 

.1. Datasets 

We evaluated our proposed approach on diffusion magnetic reso-

ance imaging (dMRI) and resting-state functional MRI (rs-fMRI) data

rovided by the Human Connectome Project (HCP) repository ( Van Es-

en et al., 2013 ), and on the Microstructure-Informed Connectomics

MICs) dataset ( Royer et al., 2021 ). 

All MRI data used in this study were publicly available and

nonymized. For HCP, we used data from the minimally processed S900

elease. Participants who did not complete full imaging data and who

ad family relationships were excluded, resulting in a total of 326 par-

icipants (mean ± SD age = 28.56 ± 3.73 years; 55% females). Par-

icipant recruitment procedures and informed consent forms, including

onsent to share de-identified data, were previously approved by the

ashington University Institutional Review Board as part of the HCP.

or MICs, the data consist of 50 healthy volunteers (29.82 ± 5.73 years;

1 females) scanned between April 2018 and September 2020. All par-

icipants denied a history of neurological illness. The MICs dataset was

pproved by the Ethics Committee of the Montreal Neurological Insti-

ute and Hospital. Written informed consent, including a statement for

penly sharing all data in anonymized form, was obtained from all 

articipants. 

.2. MRI acquisition 

HCP participants were scanned using a Siemens Skyra 3T at Wash-

ngton University. The T1-weighted (T1w) images were acquired us-

ng a magnetization-prepared rapid gradient echo (MPRAGE) sequence

repetition time (TR) = 2400 ms; echo time (TE) = 2.14 ms; field of

iew (FOV) = 224 × 224 mm 

2 ; voxel size = 0.7 mm 

3 ; and number of

lices = 256). The T2-weighted (T2w) structural data were obtained with

he T2-SPACE sequence, with an identical geometry as the T1w data but

ifferent TR (3200 ms) and TE (565 ms). The dMRI data were acquired

ith the spin-echo echo-planar imaging (EPI) sequence (TR = 5520 ms;

E = 89.5 ms; FOV = 210 × 180 mm 

2 ; voxel size = 1.25 mm 

3 ; b -

alue = three different shells i.e., 1000, 2000, and 3000 s/mm 

2 ; num-

er of diffusion directions = 270; and number of b0 images = 18).

he rs-fMRI data were collected using a gradient-echo EPI sequence

TR = 720 ms; TE = 33.1 ms; FOV = 208 × 180 mm 

2 ; voxel size = 2 mm 

3 ;

umber of slices = 72; and number of volumes = 1200). During the rs-

MRI scan, participants were instructed to keep their eyes open looking

t a fixation cross. Two sessions of rs-fMRI data were acquired; each

f them contained data of left-to-right and right-to-left phase-encoded

irections, providing up to four time series per participant. 

For MICs, participants were scanned at the McConnell Brain Imag-

ng Centre of the Montreal Neurological Institute and Hospital on a 3T

iemens Magnetom Prisma-Fit equipped with a 64-channel head coil.

articipants underwent a T1w structural scan, followed by multi-shell

MRI and rs-fMRI. In addition, a pair of spin-echo images was acquired

or distortion correction of individual rs-fMRI scans. Two T1w scans

ith identical parameters were acquired with a 3D-MPRAGE sequence

TR = 2300 ms, TE = 3.14 ms, TI = 900 ms, flip angle = 9°, iPAT = 2, par-

ial Fourier = 6/8, voxel size = 0.8 mm 

3 , matrix = 320 × 320, and num-

er of slices = 224). Both T1w scans were visually inspected to ensure

inimal head motion before they were submitted to further processing.

 spin-echo EPI sequence with multi-band acceleration was used to ob-

ain dMRI data, consisting of three shells with b-values 300, 700, and

000 s/mm2 and 10, 40, and 90 diffusion weighting directions per shell,

espectively (TR = 3500 ms, TE = 64.40 ms, voxel size = 1.6 mm 

3 , flip

ngle = 90°, refocusing flip angle = 180°, FOV = 224 × 224 mm 

2 , slice

hickness = 1.6 mm, mb factor = 3, echo spacing = 0.76 ms, number of

0 images = 3). One rs-fMRI scan was acquired using multiband accel-

rated 2D-BOLD EPI (TR = 600 ms, TE = 30 ms, voxel size = 3 mm 

3 ,
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Fig. 1. Schematic of the proposed approach . Given a pair of structural (SC) and functional (FC) connectivity matrices, first we use diffusion maps to obtain the structural 

embedding of the SC. The functional embedding (dashed) is only shown for visualization purposes, to illustrate the differences that might exist between the structural 

and functional spectra and also their eigenvectors. By increasing the diffusion time t (see Walking on the SC), we can see that the structural eigenvalues approximate 

the functional eigenvalues shown in red. For each diffusion time, we can obtain a different representation of the structural diffusion coordinates. The larger the 

diffusion time is, the closer the brain regions are to each other in the structural embedding, and hence their pairwise connectivity is increased. Then, a rotation 

matrix is used for each diffusion time to obtain a kernel that represents the predicted FC at time t. This can be seen as finding a rotation matrix to align the structural 

embedding to the functional one, see dashed line. The kernels are then fused to obtain the final predicted FC matrix. 
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ip angle = 52°, FOV = 240 × 240 mm 

2 , slice thickness = 3 mm, mb

actor = 6, echo spacing = 0.54 ms). Participants were instructed to keep

heir eyes open, look at a fixation cross, and not fall asleep. A complete

ist of acquisition parameters can be found in the detailed imaging pro-

ocol provided by Royer et al. (2021) . 

.3. Data preprocessing 

HCP data underwent the initiative’s minimal preprocessing

ipelines ( Glasser et al., 2013 ). In brief, structural MRI data un-

erwent gradient nonlinearity and b0 distortion correction, fol-

owed by co-registration between the T1w and T2w data using a

igid-body transformation. Based on HCP’s preprocessing pipeline,

ias field correction was performed by capitalizing on the in-

erse intensities from the T1- and T2-weighting modalities as de-

cribed in Glasser et al. (2013) . The code used for preprocessing

s available at https://www.humanconnectome.org/software/hcp-mr-

ipelines. Processed data were nonlinearly registered to MNI152 space

nd the white and pial surfaces were generated by following the

oundaries between different tissues ( Dale et al., 1999 ; Fischl, 2012 ;

ischl et al., 1999 a, 1999b ). The white and pial surfaces were averaged

o generate a mid-thickness surface, which was used to generate the

nflated surface. The spherical surface was registered to the Conte69

emplate with 164k vertices ( Van Essen et al., 2012 ) using MSMAll

 Glasser et al., 2016 ; Robinson et al., 2014 ) and downsampled to a 32k

ertex mesh. The dMRI data underwent b0 intensity normalization, and

PI distortions were corrected by leveraging reversed phase-encoded di-

ections. The dMRI data was also corrected for eddy current distortions

nd head motion. The rs-fMRI data preprocessing involved corrections

or EPI distortions and head motion, and fMRI data were registered to

he T1w data and subsequently to MNI152 space. Magnetic field bias

orrection, skull removal, and intensity normalization were performed.

oise components attributed to head movement, white matter, cardiac
3 
ulsation, arterial, and large vein related contributions were automat-

cally removed using FIX ( Salimi-Khorshidi et al., 2014 ). The minimal

reprocessing with FIX-denoising pipeline of the HCP performs a high-

ass filtering with a cutoff of 2000 s full width at half maximum (FWHM)

 Glasser et al., 2013 ). Preprocessed time series were mapped to stan-

ard grayordinate space, with a cortical ribbon-constrained volume-to-

urface mapping algorithm. The total mean of the time series of each

eft-to-right/right-to-left phase-encoded data was subtracted to adjust

he discontinuity between the two datasets and they were concatenated

o form a single time series data. 

For the MICs dataset, T1w images were anonymized and de-

dentified by defacing all structural volumes. Each T1w scan

as deobliqued and reoriented. T1w scans were then linearly

o-registered and averaged, automatically corrected for intensity

onuniformity using the N4ITK approach ( Tustison et al., 2010 ),

hich is available in the Advanced Neuroimaging Tools (ANTs)

https://github.com/ANTsX/ANTs), and intensity normalized. Result-

ng images were skull-stripped, and subcortical structures were seg-

ented using FSL FIRST ( Jenkinson et al., 2012 ). Cortical surface seg-

entations were generated from native T1w scans using FreeSurfer 6.0

 Dale et al., 1999 ; Fischl, 2012 ; Fischl et al., 1999 a, 1999b ). The dMRI

ata were pre-processed using MRtrix ( Tournier et al., 2012 , 2019 ).

he dMRI data underwent b0 intensity normalization, and were cor-

ected for susceptibility distortion, head motion, and eddy currents.

equired anatomical features for tractography processing were co-

egistered to native dMRI space using affine transformation tools im-

lemented in ANTs ( Tustison and Avants, 2013 ). Diffusion process-

ng and tractography were performed in native dMRI space. For rs-

MRI, images were pre-processed using AFNI ( Cox, 1996 ) and FSL

 Jenkinson et al., 2012 ). The first five volumes were discarded to en-

ure magnetic field saturation. Images were reoriented, and motion as

ell as distortion corrected. Nuisance variable signal was removed us-

ng ICA-FIX ( Salimi-Khorshidi et al., 2014 ) and by performing spike
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egression. Volume timeseries were averaged for registration to na-

ive FreeSurfer space using boundary-based registration ( Greve and Fis-

hl, 2009 ). Native timeseries were mapped to individual surface models

sing a boundary-based registration and smoothed using a Gaussian ker-

el (FWHM = 10 mm, smoothing performed on native midsurface mesh)

sing workbench. The preprocessing of the MICs dataset was performed

ith micapipe ( https://micapipe.readthedocs.io ). 

.4. Functional and structural connectome generation 

To estimate FC matrices, individual rs-fMRI timeseries mapped to

ndividual surface models were averaged within parcels defined by the

ortical parcellation scheme. Cortical timeseries were sampled from

ach vertex of the native FreeSurfer space cortical surface segmentation,

nd averaged within surface parcels. Individual functional connectomes

ere generated by cross-correlating all nodal timeseries. 

SC representations were generated from preprocessed dMRI data us-

ng MRtrix ( Tournier et al., 2012 , 2019 ). Different tissue types of cor-

ical and subcortical grey matter, white matter, and cerebrospinal fluid

ere segmented using T1-weighted image for anatomical constrained

ractography ( Smith et al., 2012 ). Multi-shell and multi-tissue response

unctions were estimated ( Christiaens et al., 2015 ) and constrained

pherical-deconvolution and intensity normalization were performed

 Jeurissen et al., 2014 ). The initial tractogram was generated with 40

illion streamlines, with a maximum tract length of 250 and a fractional

nisotropy cutoff of 0.06. Spherical-deconvolution informed filtering of

ractograms (SIFT2) was applied to reconstruct whole brain streamlines

eighted by cross-section multipliers ( Smith et al., 2015 ). To build a

tructural connectome, the reconstructed cross-section streamlines were

apped to selected cortical parcellation schemes. 

.5. Proposed framework 

Let 𝑆 ∈  

𝑛 ×𝑛 be the connectivity matrix representing a given SC,

here each entry 𝑆( 𝑖, 𝑗 ) is the weight of the edge connecting the i th

nd j th cortical locations, computed as the total number of stream-

ines connecting both locations, such that 𝑆( 𝑖, 𝑗 ) = 𝑆( 𝑗, 𝑖 ) and 𝑆( 𝑖, 𝑗 ) ≥
 , ∀𝑖, 𝑗 = 1 , ..., n . Our purpose is to predict the FC, the correlations of

esting-state functional signals, from its corresponding SC (i.e., 𝑆). To

o so, we leverage diffusion maps ( Coifman and Lafon, 2006 ). We first

roceed by normalizing the SC matrix to define the diffusion operator

 : 

 ( 𝑖, 𝑗 ) = 𝑆 ( 𝑖, 𝑗 ) 
𝑞 ( 𝑖 ) 

, (1)

here q(i) = 
∑
k 
S( i , k ) denotes the degree in the connectome, such that

𝑘 

𝑃 ( 𝑖, 𝑘 ) = 1 . Now 𝑃 𝑖𝑗 can be viewed as the probability for a random

alker on the SC 𝑆 to make a step from the i th to j th cortical locations.

s 𝑃 is not symmetric, we can further define a symmetric operator Δ: 

( 𝑖, 𝑗 ) = 
√
𝑞 ( 𝑖 ) √
𝑞 ( 𝑗 ) 

𝑃 ( 𝑖, 𝑗 ) = 
𝑆 ( 𝑖, 𝑗 ) √
𝑞 ( 𝑖 ) 

√
𝑞 ( 𝑗 ) 

, (2)

In matrix notation, we have that Δ = 𝑄 

−1∕2 𝑆 𝑄 

−1∕2 , where 𝑄 de-

otes the degree matrix of 𝑆 (a diagonal matrix such that 𝑄 ( 𝑖, 𝑖 ) = 𝑞( 𝑖 ) =

𝑘 

𝑆( 𝑖, 𝑘 ) . Using spectral theory, it can be shown that Δ has the following

igendecomposition: 

( 𝑖, 𝑗 ) = 
∑
k≥ 0 

λ2 k ψ k ( i ) ψ k ( j ) , (3)

here 1 = λ0 ≥ | λ1 | ≥ |λ2 | ≥ ⋯ is the eigenspectrum and { 𝜓 𝑘 } the cor-

esponding eigenvectors of Δ. This operator shares the same spec-

rum with 𝑃 and its eigenvectors are orthogonal, unlike those of 𝑃 

 Coifman and Hirn, 2014 ). Now, a walk of length 𝑡 in the SC can be

epresented by the diffusion maps Ψ𝑡 as follows: 

𝑡 ( 𝑖 ) = 
(
λ𝑡 0 ψ 0 ( 𝑖 ) , λ

𝑡 
1 ψ 1 ( 𝑖 ) , …

)𝑇 
, (4)
4 
here 𝑇 stands for transpose. A desirable property of the diffusion map

𝑡 is that it embeds the data into a Euclidean space in which the Eu-

lidean distance is equal to the diffusion distance 𝐷 𝑡 : 

 

2 
𝑡 
( 𝑖, 𝑗 ) = 

∑
𝑘 ≥ 0 

λ2 𝑡 
𝑘 
( ψ ( 𝑖 ) − ψ ( 𝑗 ) ) 2 = ‖Ψ𝑡 ( 𝑖 ) − Ψ𝑡 ( 𝑗 ) ‖2 , (5)

here ‖ ⋅ ‖ denotes the 𝑙 2 -norm. With this metric, we can capture the

onnectivity of two cortical locations for each length of the walks 𝑡 in

he SC. Note that as 𝑡 grows, the diffusion distance between the cortical

ocations will decrease and will be mainly driven by the first diffusion

oordinates, i.e., those coordinates corresponding to the largest eigen-

alues. This will allow us to approximate the distances based solely on

he dominant eigenvectors and reduce the dimensionality of the diffu-

ion maps. 

Let 𝐹 ∈  

𝑛 ×𝑛 be the FC matrix, built using time-series correlation

nalysis of an fMRI scan from the same subject. Since diffusion maps

efine a Euclidean space, we propose to predict the FC using a kernel

usion approach: 

rgm in 
𝛼∈ 

𝑚 

‖𝐹 − ∑𝑚 

𝑡 =1 𝛼𝑡 𝐾 𝑡 ‖2 𝐹 + 𝜇1 ‖𝛼‖2 2 
𝑠.𝑡. 𝛼𝑡 ≥ 0 , ∀𝑡 = 1 , … , 𝑚, 

(6) 

here 𝐾 𝑡 ( 𝑖, 𝑗 ) = 𝑒𝑥𝑝 ( − 𝛾‖Ψ𝑡 ( 𝑖 ) − Ψ𝑡 ( 𝑗) ‖2 ) = 𝑒𝑥𝑝 ( − 𝛾𝐷 

2 
𝑡 
( 𝑖, 𝑗 ) ) is a radial ba-

is function (RBF) kernel built from the diffusion maps Ψ𝑡 for each dif-

usion time 𝑡 , and 𝛾 is the kernel bandwidth; 𝑚 is the total number of

alks considered, 𝛼𝑡 ≥ 0 is the coefficient corresponding to the RBF ker-

el 𝐾 𝑡 , 𝜇1 is a trade-off parameter, and ‖ ⋅ ‖𝐹 is the Frobenius norm.

iven that 𝐾 𝑡 ( 𝑖, 𝑗 ) ∈ [ 0 , 1 ] and 𝐹 ( 𝑖, 𝑗 ) ∈ [ −1 , 1 ] , in our setting we scale

he FC matrices to the range [ 0 , 1 ] for training and undo this opera-

ion after prediction. Since we will assess performance using Pearson’s

orrelation coefficient, which is invariant under positive linear transfor-

ations, this scaling has no effect on the results. 

Although we can approximate the functional eigenvalues with an

ncreasing number of walks in the structural embedding, as shown in

ig. 1 , the structural and functional embeddings do not share the same

iffusion coordinates. We therefore propose to find a transformation of

he structural embedding to more faithfully reconstruct the FC. Let Y 𝑡 ∈
 

𝑛 ×𝑝 be a matrix representing the diffusion coordinates of the SC at time

 and p ≤ n , we aim to find a rotation matrix Ω ∈  

𝑛 ×𝑛 to transform the

iffusion coordinates as follows: 

argm in 

∈  

𝑛 ×𝑚 

𝛼 ∈  

𝑚 

‖𝐹 − ∑𝑚 

𝑡 =1 𝛼𝑡 𝑘 
(
ΩY 𝑡 

)‖2 
𝐹 
+ 𝜇1 ‖𝛼‖2 2 

𝑠.𝑡. ΩΩ𝑇 = Ω𝑇 Ω = 𝐼 𝑛 , det ( Ω) = 1 , 
𝛼t ≥ 0 , ∀𝑡 = 1 , … , 𝑚, 

(7) 

here 𝐼 𝑛 is an 𝑛 × 𝑛 identity matrix, 𝑑𝑒𝑡 ( ⋅) stands for matrix determinant,

nd [ 𝑘 ( Γ𝑡 )] 𝑖,𝑗 = 𝑒𝑥𝑝 ( − 𝛾‖Γ𝑡 ( 𝑖 ) − Γ𝑡 ( 𝑗) ‖2 ) and Γt = ΩY t , with Γt denoting

he rotated structural diffusion map, and Γ𝑡 ( 𝑖 ) the i th row of Γ𝑡 . It is
orth noting that the scaling of the eigenvectors is different for each

iffusion time 𝑡 , and because of the spectrum decay, we will be having

ewer and fewer diffusion coordinates contributing to the computation

f the RBF kernels. This will be producing a different kernel 𝐾 𝑡 for each

iffusion time 𝑡 . Based on this observation, we extend our approach to

nclude a rotation for each diffusion time: 

𝑎𝑟𝑔𝑚𝑖𝑛 

1 , … , Ωm ∈  

𝔫 ×𝔫 

𝛼 ∈  

𝔪 

‖𝐹 − 
𝑚 ∑
𝑡 =1 
α𝑡 𝑘 

(
Ωt Y 𝑡 

)‖2 
𝐹 
+ μ1 ‖α‖2 2 + 

μ2 
𝑚 − 1 

𝑚 −1 ∑
𝑡 =1 

𝑑 
(
Ω𝑡 , Ω𝑡 +1 

)

.𝑡. Ωt ΩT t = Ωt 
𝑇 Ωt = 𝐼 𝑛 , 𝑑𝑒𝑡 

(
Ωt 

)
= 1 , 

t ≥ 0 , ∀𝑡 = 1 , … , 𝑚, (8)

here we include a third term and its trade-off parameter 𝜇2 to avoid

verfitting, with 𝑑( Ω𝑡 , Ω𝑡 +1 ) denoting the distance between two con-

ecutive rotation matrices. When 𝜇 = 0 , no restrictions are imposed on

https://micapipe.readthedocs.io
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he rotation matrices, whereas when 𝜇2 > 0 , this term enforces the ro-

ations of consecutive diffusion times to be similar to each other. In the

xtreme case where 𝜇2 tends to infinity, the problem amounts to finding

ne single rotation shared by all diffusion times ( as shown in Eq. (7) ).

iologically, one can think of these rotation matrices as identifying the

ptimal paths through which to propagate information between differ-

nt regions of the brain. Since we have one rotation matrix for each dif-

usion time, each rotation will identify paths of a specific length. That

s, the rotation corresponding to diffusion time 𝑡 will attempt to find the

ptimal paths of length 𝑡 that connect a pair of brain regions. 

To infer the latent variables in our problem, we employ an alternat-

ng optimization technique. We minimize the cost function in Eq. (8) for

ach output variable, while holding the estimates of the other unknowns

onstant. Note that, for brevity, in our formulation we only considered

 single subject, but the optimization is performed for multiple subjects.

o determine the set of rotations, we recast our cost function to a Rie-

annian manifold optimization problem ( Absil et al., 2009 ; Hu et al.,

020 ). Riemannian optimization translates a constrained optimization

roblem into an unconstrained optimization problem where the con-

traints are implicitly defined by the search space. Particularly, for our

roblem, the target manifold is the Special Orthogonal group  ( 𝑛 ) . For

ore than one rotation, we can define the target manifold as the product

anifold of rotations, ( Ω1 , Ω2 , … , Ω𝑚 ) ∈  ( 𝑛 ) 𝑚 : 

𝑎𝑟𝑔𝑚𝑖𝑛 
1 , …, Ωm ∈ ( 𝑛 ) 

‖𝐹 − 
𝑚 ∑
𝑡 =1 
α𝑡 𝑘 

(
Ωt Y 𝑡 

)‖2 
𝐹 
+ 

μ2 
𝑚 − 1 

𝑚 −1 ∑
𝑡 =1 

‖𝑙𝑜𝑔 (Ω𝑇 
𝑡 
Ω𝑡 +1 

)‖𝐹 , (9)

here the distance between rotation matrices 𝑑( Ω𝑡 , Ω𝑡 +1 ) =
𝑙𝑜𝑔( Ω𝑇 

𝑡 
Ω𝑡 +1 ) ‖𝐹 is suitably chosen to be the geodesic distance on

 ( 𝑛 ) and 𝑙𝑜𝑔( ⋅) denotes the matrix logarithm ( Boumal et al., 2014 ).

iven that kernels corresponding to consecutive numbers of walks are

imilar, this term imposes that their rotation matrices must lie close

o each other on the rotation manifold. The problem in Eq. (9) can be

olved using Riemannian optimization algorithms. In our case, we use

he Riemannian conjugate gradient algorithm ( Absil et al., 2009 ) as

mplemented in Pymanopt ( Townsend et al., 2016 ). 

Once we have estimated the rotation matrices, the next step is solving

or 𝛼, which amounts to ridge regression with non-negativity constraints

n the coefficients. Let 𝑋 = ( 𝑢𝑣𝑒𝑐 ( 𝐾 1 ) , 𝑢𝑣𝑒𝑐 ( 𝐾 2 ) , ⋯ , 𝑢𝑣𝑒𝑐( 𝐾 𝑚 ) ) and 𝑦 =
𝑣𝑒𝑐 ( 𝐹 ) , where 𝑢𝑣𝑒𝑐 ( ⋅) returns the upper triangular part of a symmetric

atrix, without the elements in the main diagonal. This optimization

roblem amounts to: 

𝑟𝑔𝑚𝑖𝑛 
α∈ 

𝔪 
α𝑇 

(
𝑋 

𝑇 𝑋 + μ1 𝐼 
)
α − 2 𝑦 𝑇 𝑋α + 𝑦 𝑇 𝑦 𝑠.𝑡. α ≥ 0 , (10)

here the third term does not affect the optimization. This problem

an be solved with conventional quadratic programming. The proposed

pproach is implemented in Python and the code is publicly available at

 https://github.com/MICA-MNI/micaopen/tree/master/sf _ prediction ). 

.6. Experimental settings 

The performance of the proposed approach in predicting FC from SC

as assessed in the HCP and MICs datasets. For MICs, prediction ac-

uracy was based on a 3-fold cross-validation (CV) strategy based on

ll 50 individuals in the dataset. For HCP ( n = 326), the data was ran-

omly split in 3 subsets: 50 individuals were selected for CV, 250 for

oldout, and the remaining 26 individuals were used for parameter tun-

ng. Following previous studies, prediction performance was reported

n terms of Pearson’s correlation coefficient based on the upper triangu-

ar parts (excluding the main diagonal) of both empirical and predicted

C matrices. Regarding parameter tuning, we used an independent sub-

et (26 subjects) from the HCP dataset to find the optimal values for

he hyperparameters (i.e., 𝜇1 , 𝜇2 , and 𝛾 of the RBF kernels) of our pro-

osed approach. Note that this subset was not used to report any re-

ults. The best values for both 𝜇1 and 𝜇2 were chosen from a grid of 9

quidistant points in logarithmic scale in the interval [1e-4, 1e4]. The
5 
ptimal value for 𝜇1 was found to be 100. For the Riemannian regular-

zation, our initial benchmarking showed a negligible improvement for

2 ≤ 0 . 001 , and we therefore chose to report our results for 𝜇2 = 0 . For

he RBF kernel, 𝛾 was chosen to be the standard deviation of the dif-

usion distances for each random walk. These optimal hyperparameter

alues were then used to assess performance in both the HCP and MICs

atasets. 

Our proposed approach was tested using SC and FC matrices built

ased on two different cortical atlases: (i) a parcellation derived using

unctional MRI data ( Schaefer et al., 2018 ), and (ii) a structurally de-

ned parcellation based on a more fine-grained clustering of the well-

stablished Desikan Killiany parcellation ( Desikan et al., 2006 ; Vos de

ael et al., 2020 ). To assess the robustness of the proposed approach

cross different spatial scales, our experiments were repeated for two

ifferent parcellation granularities, using parcellations with 100 and

00 cortical regions. We also explored different weighting schemes to

efine the SC matrices in explaining ongoing brain function. We an-

lyzed three versions of the SC: (i) binary SC, where each entry in

he SC matrix is set to 1 only if there is at least one streamline con-

ecting the corresponding regions of the brain, (ii) length-based SC,

hich is built using an RBF kernel based on the mean length of the

treamlines connecting pairs of brain regions, and (iii) count-based SC,

hich is defined based in the number of streamlines connecting each

airs of brain regions. Unless otherwise stated, our experiments are

ased on SC matrices defined using the latter weighting scheme ( i.e.,

ount-based). We also investigated the contribution of diffusion time

t network level, and the role it plays in strengthening the structure-

unction coupling and its relationship with the principal functional gra-

ient ( Margulies et al., 2016 ). The principal functional gradient was

stimated using BrainSpace ( Vos de Wael et al., 2020 ). 

We compared the performance of the proposed approach with state-

f-the-art methods. Among those based on the structural eigenvectors,

e compared our approach to the Multiple Kernel Learning (MKL)

 Surampudi et al., 2018 ) and Spectral ( Becker et al., 2018 ) approaches.

riefly, in the MKL approach, multiple diffusion kernels on the SC are

inearly combined using LASSO ( Tibshirani, 1996 ) to predict FC. The

pectral approach, on the other hand, learns a shared functional em-

edding and a mapping from the functional to the structural eigen-

alues for each individual, which are then used to build the pre-

icted FC matrices. Note that, in the Spectral approach, the individ-

al structural eigenvectors are not taken into consideration to pre-

ict FC. Outside the eigenvector-based category, we included results

sing the single Laplacian-based diffusion kernel (SDK) proposed in

bdelnour et al. (2014) , and the series expansion approach (NLSA)

n Meier et al. (2016) . SDK defines a single diffusion kernel at a spe-

ific scale (or diffusion time) from the symmetric normalized Lapla-

ian matrix of the SC. In our work, the optimal scale was chosen so

hat it provided the best performance in the training data. NLSA, on

he other hand, predicts FC as a truncated Taylor series expansion

f the SC ( Tewarie et al., 2020 ). We used code provided by the au-

hors for both MKL ( https://github.com/govindasurampudi/MKL ) and

pectral ( https://brainopt.github.io/spectral-mapping ). Finally, our ap-

roach used multiple kernels along with their corresponding rotation

atrices. To elucidate the contribution of each of these components, we

ncluded two additional versions of our method to the comparison ta-

le: (1) "SingleLength" only used one single kernel or random walk for

rediction, and (2) "SharedRot" used a single rotation matrix shared by

ll the random walks. 

Additionally, given that structural connectome reconstruction algo-

ithms are prone to errors ( Maier-Hein et al., 2017 ), we conducted a

erturbation analysis to investigate the robustness of the proposed ap-

roach to noisy and spurious connections in the SC. In this analysis,

e used the models (i.e., rotations and coefficients) that we built from

he original data to assess the performance on perturbed SC matrices

nd compared the results to the original unperturbed SC matrices. SC

atrices were perturbed based on two different strategies: 

https://github.com/MICA-MNI/micaopen/tree/master/sf_prediction
https://github.com/govindasurampudi/MKL
https://brainopt.github.io/spectral-mapping
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• Weight perturbation: randomly shuffle the weights among a given

proportion (e.g., 10%) of existing connections. Here, we preserve

the same connections and only change their weights. 

• Connection perturbation: randomly remove a proportion of existing

connections and assign their weights at random to non-existing con-

nections. Although this strategy creates new connections, the num-

ber of connections in the SC is preserved because the same number

of newly created connections is removed from the SC matrix. 

Perturbation was only applied to a proportion of the existing connec-

ions, which ranged from 0.1 to 0.9, with 0.1 increment. The analysis

as carried out in the holdout subjects of the HCP dataset, and was per-

ormed for both functional and structural parcellations with 100 and

00 regions. 

. Results 

.1. Walking on the structural connectome increases prediction accuracy 

To faithfully reconstruct the FC from the sparse SC, we first investi-

ated the role of diffusion time (or path length) in the prediction accu-

acy of our proposed approach. We explored the contribution of random

alks of different lengths, ranging from 1 to 10, such that for a given

aximum length of 5 for example, we considered random walks of any

ength below or equal to 5. In this way, we are not only including the

tatic direct connections present in the SC, but also allow our method

o incorporate information about the SC at multiple scales, i.e., after

ropagating information between indirectly connected brain regions. 

The prediction accuracy of our proposed approach was assessed in

wo different datasets, namely: HCP and MICs. For HCP, Fig. 2 a shows

oxplots with the correlation between the empirical and predicted FC

atrices using structural random walks with maximum lengths rang-

ng from 1 to 10. Results are reported in both cross-validation (using

 3-fold CV based on 50 randomly chosen subjects) and holdout data

250 subjects) subsets, and using different cortical parcellation atlases

defined using structural and functional information) and number of re-

ions (100 and 200 parcels). These results showed that the highest per-

ormance (in terms of Pearson’s correlation coefficient) was achieved

ith approximately a maximum path length of 3-4. After that, perfor-

ance plateaued and the change in prediction accuracy, although pos-

tive, was in most scenarios negligible. Overall, these trends were con-

istent in both cross-validation and holdout datasets, and across the dif-

erent parcellations and numbers of regions. In the holdout set of HCP,

or example, prediction accuracy improved substantially when consid-

ring random walks of length up to 3 (0.174/0.165 increase in mean

earson’s correlation coefficient for 100/200 regions functional par-

ellations, and 0.085/0.112 for the analogous structural parcellations),

hereas with the incorporation of additional walks (those with path

engths from 4 to 10), we only found very small improvements in perfor-

ance (0.017/0.007 and 0.013/0.002 average increase for the 100/200-

ode functional and structural parcellations, respectively). Moreover,

hen comparing the type and size of the parcellations, prediction ac-

uracy was consistently lower in structural than in functional parcella-

ions, and dropped when increasing the number of parcels used to build

he connectivity matrices. Results on the MICs dataset, based on a 3-fold

ross-validation, are shown in Fig. S1 of the supplementary materials.

imilar to HCP, highest performance was achieved with random walks of

ength 3 or shorter, with prediction accuracy decaying when the number

f cortical parcels increased. However, no clear trend was found when

omparing performance based on the structural and functional parcel-

ation (see Comparison with state-of-the-art methods section). 

To further illustrate how brain function emanates from the SC as the

ength of the random walks increases ( i.e., as we increasingly incorpo-

ate indirect connections between cortical regions), Fig. 2 b displays the

riginal SC matrices and the predicted FC matrices corresponding to the

ndividuals that achieved the median Pearson’s correlation coefficient in
6 
he holdout subset of the HCP dataset. The predicted FC matrices cor-

esponding to random walks of length 1, 3 and 10 are displayed in the

ower triangular parts, with their respective empirical FC shown in the

pper triangular parts. Results shown in Fig. 2 b are based on both the

tructural and functional parcellations with 100 regions. For the 200-

ode parcellations, results are shown in Fig. S2. With both parcella-

ion types and sizes, we found some similarities emerge with random

alks of length 1, but these considerably increased as larger walks (in-

irect paths) were incorporated. This points to communication between

ifferent cortical regions through indirect paths of lengths larger than

ne, which highlights the importance of polysynaptic mechanisms in the

mergence of the brain’s function and, at the same time, shows that only

 small number of hops (path lengths ≤ 3) in the SC may be required to

ccurately predict FC, as shown by the results in Fig. 1 a. Furthermore,

e also found that functionally defined cortical parcellations were more

uitable than structurally derived ones in the prediction of FC from SC.

.2. Comparison of structural connectome characteristics 

The structural connectivity matrices used so far in our experiments

ere derived from fiber density estimates, such that each entry in the

atrix denotes the number of streamlines connecting the specific pair of

rain regions. Here, we sought to investigate the contribution of differ-

nt weighting schemes to define SC. First, we used different versions of

he structural connectivity matrices: (i) the original SC matrices, where

dges carried information about the streamline count, (ii) binary SC,

here we preserved the same edges but ignored edge information (with

he weights of all edges set to 1), and (iii) length-based SC, with the

ame edges but the weights were based on the inverse of the average

ength of the streamlines. We repeated the experiments to learn the set

f rotations and kernel coefficients for each version of the structural

onnectome. 

As shown in Fig. 3 a, based on results on the holdout data of HCP

nd 200-node parcellations, when using SC based on streamline count

e achieved the best accuracy in predicting FC, with a considerable im-

rovement over binary SC, which in turn outperformed length-based SC.

ore importantly, diffusion time did not seem to have the same contri-

ution when using binary or length-based SC matrices for prediction.

ith the functional parcellation, a path length of 1 with the binary SC

rovided better FC predictions than the count-based SC, however, as

he lengths of the paths increased, the boost in performance only oc-

urred with count-based SC. With the structural parcellation, this was

ven more evident, with prediction accuracy remaining almost constant

s diffusion time increased when using binary and length-based SC. Fol-

owing the diffusion maps framework, with increasing diffusion time,

airs of brain regions will increase the strengths of their connections

ccording to the strengths of their immediate direct connections and

hose of their neighbors. For the purposes of brain function, this may

uggest that the more important the ‘structural’ connection between a

air of regions is, the more fibers the brain invests in its construction.

xamples of predicted FC matrices using binary and length-based SC

re displayed in Fig. 3 b. These examples correspond to the subjects that

chieved the mean Pearson’s correlation coefficient in the holdout set

f HCP for the 200-node functional and structural parcellations. As we

an see, the proposed approach produced the least accurate FC matri-

es when using length-based SC matrices. The fact that better prediction

ccuracies were achieved by binary SC matrices, which may be an over-

implified representation of the connectome, indicates that the length

f a given connection (quantified as the mean length along all intercon-

ecting streamlines) may not be as informative as its density. 

Finally, in Fig. 3 c we can find the optimal kernel coefficients and ro-

ations matrices learnt by our proposed approach when trained with

ach of the three different versions of the SC matrices. When using

ount-based SC, the kernels that most contributed to the final prediction

orresponded to diffusion times 2–5, followed by 6 and 1. Kernels with

igher diffusion times (t > 6) had the least contribution. On the other
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Fig. 2. Functional connectivity prediction accuracy using random walks of different lengths in the structural connectome . ( a) Boxplots of Pearson’s correlation coefficient 

between empirical and estimated FC matrices using random walks of maximum length ranging from 1 to 10. Results are reported in cross-validation (3-fold CV 

based on 50 subjects) and holdout (250 subjects) data of HCP using functionally ( left ) and structurally derived cortical parcellations ( right ) with 100 and 200 regions. 

Boxes denote the interquartile range (IQR) between the first and third quartiles, and the line inside denotes the median. Whiskers extend to points that lie within 

1.5 IQRs of the lower and upper quartiles, and the black diamonds denote outliers. ( b) Estimated functional connectivity matrices corresponding to the subjects that 

achieved the median Pearson’s correlation coefficient based on functional ( top ) and structural ( bottom ) parcellations with 100 parcels. From left to right: structural 

connectome and estimated FC matrices for random walks of length 1, 3 and 10. Empirical and estimated functional connectivity matrices are shown in upper and 

lower triangular parts, respectively. 
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Fig. 3. Comparison of prediction performance and model parameters based on binary, length- and count-based SC matrices . ( a) Mean Pearson correlation (and 95% 

confidence interval) between empirical and estimated FC matrices based on SC matrices built using streamline length, streamline count, and the binarized connectome. 

Results are reported for random walks of length 1–10 on the SC for both the 200-node functional ( left ) and structural ( right ) parcellations. ( b) Estimated FC matrices 

corresponding to the subjects that achieved the median Pearson’s correlation coefficient based on functional ( top ) and structural ( bottom ) parcellations with 200 

parcels. From left to right: count-based SC matrices, and empirical and estimated FC matrices based on streamline length, binary SC, and streamline count. The 

displayed estimated connectivity matrices correspond to using random walks of length ≤ 10. ( c) Optimal kernel coefficients (normalized), 𝛼, and rotations matrices 

obtained when trained with binary, length- and count-based SC matrices using random walks of length ≤ 10 and the 200-node functional parcellation. Rotation 

scatterplots are based on the two first dimensions of multidimensional scaling (using the geodesic distance between rotation matrices). Results are reported in the 

holdout data of the HCP dataset. 

8 
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Fig. 4. Prediction accuracy at the network level . ( a) Lateral and medial views of left and right hemispheres showing spatial cortical maps of average FC prediction 

error in terms of log Pearson distance (defined as 1-Pearson) based on the 200-node functional parcellation and the 250 subjects in the holdout data from HCP. 

Prediction error maps are shown for random walks of length 1, 2, 3 and 10. Each parcel depicts the mean prediction errors across all its edges, with darker colors 

denoting higher prediction errors. ( b) Network-wise average prediction errors estimated between empirical functional connectivity profiles and the predicted profiles 

for walks of lengths ranging from 1 to 10. Results are shown for each of the 7 functional Yeo networks based on the 100- and 200-node functional parcellations. ( c) 

Principal functional gradient derived from the empirical FC in the holdout set of HCP. ( d) Spearman’s correlation of the prediction error maps produced from each 

walk length and the principal functional gradient. Results are shown for both 100- and 200-node functional parcellations. Abbreviations: dorsal attention (DAN), 

frontoparietal (FPN), default mode (DMN), visual (VN), limbic (LSN), somatomotor (SMN), and ventral attention (VAN) networks. 
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and, with both binary and length-based SC, kernel contributions de-

ayed monotonically with increasing diffusion time. The most relevant

ifferences, however, were found when comparing the rotation matrices

earnt from the different SC versions. The rotation matrices, displayed

sing multidimensional scaling (based on the geodesic distance between

otations, as defined in Eq. (9) ), were clustered in two groups of very

imilar rotations when using binary and length-based SC. On the other

and, with count-based SC matrices, we found different rotations for

ach diffusion time until 5, while rotations were very similar for diffu-

ion times of 6 and greater. These results indicate that diffusion time

 i.e., considering increasingly larger paths) is of substantial added value

o the prediction of FC when using count-based SC, as opposed to binary

nd length-based SC data. 

.3. Region- and network-wise analysis of predicted functional connectivity

In this section, we scrutinized our results to further investigate the

ole of diffusion time at the regional and network-level. Fig. 4 a shows

patial maps of prediction error (measured as log(1-Pearson) ) for differ-

nt diffusion times ( i.e., 1, 2, 3 and 10). Here we display the average

rediction error in the holdout data of HCP for each cortical parcel ( i.e.,

erived from row-wise correlations). There were clear improvements

cross the whole cortex in the quality of the predictions as increasingly

onger paths were considered, although they became subtler with higher

iffusion times. The cortical regions where our approach produced the

argest prediction errors (irrespective of diffusion time) were confined
9 
ilaterally to the lateral temporal lobe and frontal cortices. At the net-

ork level, derived using a previous cortical decomposition into seven

ntrinsic functional networks ( Yeo et al., 2011 ), prediction error de-

reased substantially from walk lengths of 1–3 (see Fig. 4 b). With higher

alk lengths, we can only observe minor changes in prediction error

cross all networks. These findings were consistent across different par-

ellation granularities. Moreover, from these results we could identify

wo different groups of networks according to their prediction errors. FC

rediction was more accurate in visual, somatomotor and both attention

etworks than in the default mode, frontoparietal and limbic networks.

he latter were the networks that most benefited from incorporating in-

irect paths to the prediction, indicating that polysynaptic connections

ay have an important contribution to functional connectivity patterns,

specially in these transmodal i.e., heteromodal and paralimbic systems.

his was further confirmed when analyzing the relationships between

he principal functional gradient (see Fig. 4 c) and the spatial maps of

rediction error. As shown in Fig. 4 d , these maps showed very high cor-

elations with the principal functional gradient when using short paths

Spearman’s r = 0.843/0.835 in 100/200-node functional parcellation

hen diffusion time = 1), but considerably decrease as diffusion time

ncreased (Spearman’s r = 0.250/0.338 when diffusion time = 4). 

Furthermore, we assessed the contribution of subcortical regions

o the prediction of FC from SC. Subcortical regions and subcortico-

ortical structural connections mediating FC between different cortical

egions may play an important role in shaping FC ( Bell and Shine, 2016 ;

ark et al., 2021 ). In this experiment, we assessed FC prediction ac-
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Table 1 

Comparison of functional connectivity prediction accuracy with state-of-the-art methods . Performance is reported using the average Pearson’s correlation coefficient 

(and standard deviation) between the upper triangular parts of empirical and predicted FC matrices (excluding the main diagonal) using SDK, NLSA, MKL, 

Spectral and the 3 versions of our proposed approach: (i) consider random walks of a specific length (SingleLength), (ii) one single rotation shared by all random 

walks (SharedRot), and (iii ) one rotation for each length of the random walks (Proposed). Comparisons of prediction accuracy were carried out for 100- and 

200-node functional and structural parcellations. Results are reported for a 3-fold cross validation (CV) and in the holdout data in HCP. For NLSA, Spectral and 

all the versions of our proposed approach, reported performances correspond to using random walks of length 10, and 16 for MKL. For SDK, the diffusion time 

was chosen to be the one that achieved the best performance in the training set. For findings in the MICs dataset, see Table S1. 

Functional Structural 

CV Holdout CV Holdout 

100 SDK 0.238 ± 0.029 0.234 ± 0.027 0.343 ± 0.057 0.347 ± 0.069 

NLSA 0.210 ± 0.037 0.216 ± 0.036 0.351 ± 0.050 0.348 ± 0.061 

MKL 0.713 ± 0.101 0.726 ± 0.106 0.664 ± 0.110 0.705 ± 0.121 

Spectral 0.779 ± 0.059 0.761 ± 0.082 0.703 ± 0.090 0.669 ± 0.105 

SingleLength 0.757 ± 0.050 0.767 ± 0.051 0.731 ± 0.052 0.748 ± 0.050 

SharedRot 0.733 ± 0.050 0.751 ± 0.048 0.701 ± 0.068 0.728 ± 0.056 

Proposed 0.802 ± 0.054 0.804 ± 0.060 0.751 ± 0.065 0.764 ± 0.054 

200 SDK 0.241 ± 0.027 0.237 ± 0.025 0.245 ± 0.043 0.243 ± 0.035 

NLSA 0.211 ± 0.039 0.213 ± 0.030 0.241 ± 0.039 0.240 ± 0.043 

MKL 0.702 ± 0.105 0.701 ± 0.099 0.612 ± 0.124 0.627 ± 0.132 

Spectral 0.741 ± 0.073 0.725 ± 0.081 0.681 ± 0.083 0.650 ± 0.145 

SingleLength 0.727 ± 0.048 0.738 ± 0.044 0.692 ± 0.063 0.700 ± 0.054 

SharedRot 0.701 ± 0.056 0.720 ± 0.047 0.539 ± 0.112 0.571 ± 0.102 

Proposed 0.775 ± 0.049 0.776 ± 0.052 0.715 ± 0.071 0.726 ± 0.055 
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uracy using both cortical and subcortical regions. We used the MICs

ataset and the same 3-fold cross-validation strategy used in the orig-

nal analysis to assess performance. In addition to cortical regions, the

ICs dataset includes the following regions: nucleus accumbens, amyg-

ala, caudate nucleus, pallidum, putamen, thalamus, and hippocam-

us. Fig. S4 displays the average FC prediction error in both cortical

based on the 200-node functional parcellation) and subcortical regions

or random walks of length 1 and 3. We can see that cortical connec-

ivity profiles are more accurately predicted than subcortical profiles.

till, as shown in Fig. S5, when incorporating subcortical regions, we

ound consistent improvements in prediction accuracy across all parcel-

ation types and granularities. Average Pearson’s correlation increased

rom 0.742 to 0.770 and from 0.735 to 0.745 when using the 200-node

unctional and structural parcellations, respectively. Even higher perfor-

ance increases were found with the 100-node functional (from 0.750

o 0.808) and structural (from 0.768 to 0.793) parcellations. It is im-

ortant to note though that these results do not necessarily imply that

here was an increase in the prediction accuracy of cortical connectiv-

ty since the performance was based on both cortical and subcortical

egions. Nonetheless, these results support a potentially important con-

ribution of subcortical regions in elucidating the relationship between

C and FC. 

.4. Comparison with state-of-the-art methods 

We compared the prediction accuracy (average Pearson’s correlation

oefficient) of our proposed approach to several state-of-the-art methods

nd to other 2 “reduced ” versions of our approach ( SingleLength, Share-

Rot ). Benchmarking results are reported in Table 1 for the experiments

n the HCP dataset, and Table S1 for MICs. These results correspond

o using random walks of length 10. In both tables, we found a clear

ichotomy in performance between approaches based on the eigenvec-

ors of the SC and the rest ( i.e., SDK and NLSA). The latter achieved the

owest prediction accuracies, with SDK slightly outperforming NLSA in

ost experimental settings. It is worth noting that the SDK approach

nly uses one single diffusion kernel. Table 1 further reports the per-

ormances of the MKL and Spectral approaches, which achieved higher

erformances than SDK and NLSA, with the Spectral approach produc-

ng better predictions than MKL in most scenarios (except when using

he 100-node structural parcellation in MICS and the holdout dataset

n HCP). Nonetheless, all these approaches were considerably outper-
10 
ormed by our proposed approach in all experimental scenarios, and in

oth HCP and MICs datasets. 

We further assessed the contribution of the different components

f our proposed method. As shown in Table 1 and Table S1 for HCP

nd MICs, respectively, the reduced versions of our approach achieved

ower prediction accuracies than the original version. When only con-

idering random walks with a single length (SingleLength), predictions

ere more accurate than when using a single rotation shared by all

andom walks (SharedRot). These results underscore the importance of

onsidering random walks of multiple lengths and emphasizes the role

f using a different rotation for each length. 

Regarding the experimental settings, the functionally derived par-

ellation showed to be more beneficial for the prediction of FC than the

tructural parcellation used in our work. Although the structural par-

ellation consistently outperformed the functional one with SDK and

LSA, there was a substantial improvement with the functional parcel-

ation over the structural one when considering the best performing ap-

roaches (Spectral, SingleLength, SharedRot, Proposed). We also found

 clear drop in prediction accuracy across all the methods we evalu-

ted as the number of parcels increased from 100 to 200, regardless of

arcellation type (functional or structural) and dataset. 

Finally, we conducted a perturbation analysis to investigate the ro-

ustness of our approach to noisy and spurious connections in the struc-

ural connectome. As expected, the higher the proportion of disturbed

onnections, the lower the prediction accuracy, as illustrated in Fig. S3.

e also see that weight perturbation (that preserves connections and

nly changes their strengths) consistently outperformed edge perturba-

ion (adding new connections and removing existing ones). First, these

esults imply that both the connections linking specific pairs of regions

s well as their weights (number of streamlines) are of important value

or the prediction of FC. More importantly, these results also highlight

he robustness of our approach to perturbations in the SC. The aver-

ge prediction accuracy achieved by our proposed approach remained

onsiderably high even after a perturbation of 20% of the connections.

or example, when using the functional parcellation, prediction accu-

acy decayed from 0.804 to 0.760 with 100 regions (0.776 to 0.728 for

00 regions) when perturbing the connections’ weights. Similar trends

ere observed with the structural parcellation (from 0.764 to 0.737 for

he 100 regions parcellation, and 0.726 to 0.686 for 200 regions). Con-

ection perturbation (i.e., adding and removing connections) had more

mpact on prediction accuracy, which decreased from 0.804 to 0.660 for
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he 100 regions (0.776 to 0.605 for the 200 regions) functional parcella-

ion. For the structural parcellation, prediction accuracy decayed from

.764 to 0.668 for the 100 regions parcellation, and 0.726 to 0.586 for

00 regions. Note that 20% of connections is a considerably high pro-

ortion of perturbation. With 10%, our approach produced very similar

esults to those attained with the unperturbed SC, (see Fig. S3). Alto-

ether, these results indicate that our approach learns an accurate map-

ing between SC and FC that is, to a large extent, robust against spurious

tructural connections that may arise during the reconstruction of the

C. Still, it is important to acknowledge that we cannot fully discard the

mpact of reconstruction errors on prediction accuracy. 

. Discussion 

This work presented a Riemannian approach to predict functional

onnectivity (FC) from the underlying structural connectome (SC) at the

ndividual participant level. The proposed approach leveraged the dif-

usion maps framework to model the exchange of information through

he fibers between different brain regions and learn intermediate ker-

els capturing this information flow. By capitalizing on manifold opti-

ization, we did not only consider the relationships between structural

nd functional spectra, but also incorporated a mapping (rotation ma-

rices) between the eigenvectors of both domains. With the proposed

pproach, we were able to find a robust mapping between the struc-

ural and functional embeddings, as shown by our results across differ-

nt datasets, cortical parcellation atlases and parcellation granularities.

urthermore, our approach allowed us to investigate and understand

ow brain function gradually emanates from structure as information is

ropagated through increasingly longer ( i.e., multiple hops) paths across

he structural backbone. 

FC does not simply reflect the static and direct wiring of the SC,

ut it also captures higher-order interactions between potentially only

ndirectly connected areas ( Honey et al., 2009 ). We hypothesized that

y accounting for polysynaptic communication mechanisms, we could

xplain, to a large extent, the FC observed between pairs of brain re-

ions that lack a direct structural connection. Polysynaptic signaling

as modelled by controlling the diffusion time parameter of the diffu-

ion maps framework ( Coifman et al., 2005 ; Coifman and Lafon, 2006 ).

y increasing the diffusion time for a given structural embedding, we

ere able to generate diffusion coordinates that increasingly captured

he interactions between brain regions that were only indirectly con-

ected by structural links. In other words, we were gradually incor-

orating indirect paths of longer and longer lengths (paths of length

, 3, 4, and so forth), hence allowing information to flow through in-

reasingly higher-order connections. These interactions were then rep-

esented using a radial basis function kernel for each diffusion time.

urthermore, these kernels can be interpreted as intermediate states

f the brain while neural information is propagated through the struc-

ural fibers. Finally, the different kernels were then fused to provide

he predicted FC. Our results showed a monotonic increase in predic-

ion accuracy with increasing diffusion time, although with an impor-

ant leveling off in accuracy around random walks of lengths 3-4, af-

er which relative improvements were negligible. This pattern was ob-

erved across different parcellation types (functional and structural) and

cales (100 and 200 regions). Prior work in the prediction of FC from

C also highlighted shorter structural walks as the strongest contribu-

ors to the resulting FC ( Becker et al., 2018 ). Information propagation

long longer polysynaptic pathways may require more energy and incur

nefficiency in terms of transmission delay, whereas short communica-

ion paths are likely to reduce noise during communication and enhance

ynchronization of remote brain regions. This is in line with the econom-

cally optimized configuration of the brain ( Bullmore and Sporns, 2012 ).

n addition to minimizing the axonal wiring costs to build the connec-

ome, the expensive metabolic costs spent on information processing

lso encourage the transfer of information through more economic path-

ays ( Achard and Bullmore, 2007 ; Avena-Koenigsberger et al., 2014 ;
11 
ullmore and Sporns, 2012 ; Laughlin et al., 1998 ), and hence might be

avoring shorter polysynaptic paths. 

With diffusion maps, information flow is driven by the transition

robabilities of the diffusion operator, which are in turn derived from

he edge weights of the original SC matrices. In the current work, we

ought to explore the role of different weighting schemes in explaining

ngoing brain function: (i) binary weights only indicating presence or

bsence of connections, (ii) weights based on mean streamline length,

nd (iii) weights denoting fiber density (conventional scheme). Note

hat we did not change the connections of the structural graph ( i.e.,

dd and/or remove edges), only their weights. These weights play a

rucial role in guiding the random walker-based information propaga-

ion process through the SC. In the binary weighting scheme, the prob-

bility of transitioning from one brain region to another is evenly dis-

ributed among all its adjacent regions ( i.e., those with a direct struc-

ural connection), whereas in the other weighting schemes, the likeli-

ood of following a particular (direct) connection depends on its length

r fiber density. With inadequate weight assignments, we might be

isleading the diffusion process and deviating from the true putative

ow of information, which can be especially harmful for neural func-

ion synchronization of brain regions relying on polysynaptic commu-

ication mechanisms. Indeed, this is what we observed with the binary

nd length-based weighting schemes, which were substantially outper-

ormed when using weights based on fiber density. In the binary (un-

eighted) scheme, the reason behind the drop in accuracy is likely to

e the fact that all connections are treated the same, in that neural in-

ormation is propagated equally through the connections, regardless of

heir length or fiber density. More informed weighting schemes may

rovide better prediction accuracies. Nonetheless, as shown by our re-

ults, the length-based weighting scheme showed even lower predic-

ion accuracy. In this scheme, communication is preferentially carried

ut through short-distance connections, such that the longer the con-

ections, the less their involvement in neural communication. Long

onnections are, however, critical for whole-brain functional dynamics

 van den Heuvel et al, 2012 ; Deco et al., 2021 ; Wang et al., 2021 ). As

uch, a scheme that systematically favors short-range connections may

iss critical aspects of whole-brain communication, which may explain

he reduction in accuracy. More importantly, increasing diffusion time

howed no consistent contribution to prediction accuracy, which sug-

ests that the length of the streamlines might not be the most important

ndicator of their degree of participation in polysynaptic communica-

ion. According to our results, this role appears to be better explained

y the density of the streamlines, which was shown to be positively cor-

elated with the strength of FC ( Hermundstad et al., 2013 ). Regardless

f the weighting scheme, our approach relies on diffusion-based com-

unication processes ( Coifman et al., 2005 ; Coifman and Lafon, 2006 ;

asuda et al., 2017 ), in which the random walker is only driven by local

nformation. This communication strategy lies on a continuous spectrum

f communication processes that ranges from unbiased random walks

such as our proposed approach) at one extreme, through biased ran-

om walks that incorporate both local properties and information about

he global topology of the structural network, to shortest paths walk-

rs that only consider global information at the other extreme ( Avena-

oenigsberger et al., 2014 , 2019 ). Network communication models in-

orporating both local and global network properties may therefore pro-

ide additional information for understanding the correspondence of

rain structure and function and hence enhance the predictive power

f the proposed approach. Given that signal propagation is strongly in-

uenced by the number of streamlines and also (to a lesser extent) by

heir lengths ( Hermundstad et al., 2013 ), future work may consider in-

orporating global information about these properties into the diffusion

rocess to favor transmission of neural signals through shorter and more

eliable pathways ( Fornito et al., 2016 ; Goñi et al., 2014 ). 

With the purpose of supporting the dynamic emergence of coher-

nt neural activity patterns, the anatomical substrate of the brain es-

ablishes the routing network architecture that facilitates communica-
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i  
ion between disparate cerebral regions. These structural communica-

ion channels have an important say in how brain function is shaped.

t is well known that the structure-function relationship is spatially

arying across the cortex, with strong coupling in primary sensory ar-

as that gradually weakens as we move in the sensory-fugal direction

 Baum et al., 2020 ; Suárez et al., 2020 ; Sydnor et al., 2021 ; Vázquez-

odríguez et al., 2019 ), following a cortical hierarchy of functional and

tructural organization ( Margulies et al., 2016 ; Paquola et al., 2019 ;

ark et al., 2020 ). In addition to corroborating these observations, our

esults showed a tightening of the structure-function coupling in trans-

odal cortices as diffusion time increased, which, in turn, also trans-

ated into a divergence of this coupling from the principal functional

radient. As mentioned above, most of these changes occurred during

he first 3 or 4 diffusion timesteps. Although we found some improve-

ents in prediction accuracy with increasing diffusion time in unimodal

reas, diffusion time had disproportionately more impact in explain-

ng brain function in transmodal regions. These findings suggest that

rain function emerges through polysynaptic communication mecha-

isms in transmodal cortices, while shorter communication pathways

 e.g., monosynaptic) are needed in unimodal regions. In a recent study

haracterizing the directionality of neural information propagation from

ndirected structural connectome data ( Seguin et al., 2019 ), unimodal

nd transmodal cortices were found to be at extremes of the send-receive

symmetry spectrum, with unimodal cortices being more likely to be

enders and transmodal cortices more likely to be receivers. This com-

unication asymmetry may therefore account for the larger diffusion

imes required by transmodal cortices, which are thought to integrate

ultiple streams of information originating from the unimodal sensory

reas that require fewer diffusion timesteps. 

Most work studying structure-function coupling in the brain in-

estigated this relationship based on group-level SC and FC matrices

 Goñi et al., 2014 ; Seguin et al., 2020 ; Suárez et al., 2020 ). Predictions

t the group level, however, do not take into account inter-subject vari-

bility, e.g., using group consensus structural matrices that only consider

onnections when they are present in at least one-fourth of the partic-

pants ( Avena-Koenigsberger et al., 2014 ; Rosenthal et al., 2018 ). At

he individual level, this may translate into less accurate predictions.

or example, ( Sarwar et al., 2021 ) using deep learning achieved very

igh prediction accuracies at the group level ( r = 0.900) that substan-

ially dropped when considering individual predictions ( r = 0.550). In

his work, our proposed approach was able to accurately predict brain

unction at the individual level in both HCP and MICs datasets. Across

he different parcellation schemes considered, we noted a consistent in-

rease in prediction accuracy when reducing the spatial scale of the par-

ellations. This pattern was observed with all the methods used in our

xperiments, and is in alignment with prior work ( Eickhoff et al., 2018 ;

essé, 2020 ). The higher the granularity of the parcellations, the more

ources of variability and hence the more challenging to learn a unique

apping between SC and FC. Beyond its granularity, the type of par-

ellation also had an important impact on out-of-sample performance.

ere, functionally derived parcellations typically produced consistently

etter predictions than anatomically defined parcellations. Functionally

erived parcellations divide the brain in regions that are functionally ho-

ogeneous, which is not necessarily the case with parcellations based

rimarily on sulco-gyral information ( Glasser et al., 2016 ; Van Essen

t al., 2019 ). Since our objective is to predict FC, incorporating this prior

nowledge into our model is advantageous and may largely account

or the improvements in prediction accuracy we found with respect to

he anatomical parcellations. In cross-validation, the highest prediction

ccuracy ( r = 0.802) was achieved when using the coarsest functional

arcellation scheme, whereas the lowest performance ( r = 0.715) was

btained with the most granular ( i.e., 200 regions) structural parcella-

ion, both in HCP and MICs. In comparison with the state of the art, our

pproach attained the best prediction accuracies, regardless of the type

f parcellation and dataset. The proposed approach showed solid im-

rovements over the currently best performing method ( i.e., Spectral),
12 
ith percentage increases ranging from 2.95 to 14.20% in HCP (across

oth cross-validation and holdout datasets), and from 11.77 to 18.15%

n the MICs dataset. In addition, the ablation analysis of our method

ighlighted the importance of including different walk lengths and con-

idering multiple rotations (one rotation per length) for providing accu-

ate prediction. In the MICs dataset, for the 200-node structural parcel-

ation, for example, the mean Pearson’s correlation coefficient dropped

y 4.63% when only considering a single diffusion time (and hence a

ingle kernel), with an even more substantial drop of 7.30% when us-

ng one single rotation shared by all diffusion times. In HCP, prediction

ccuracy decreased even further with these two reduced versions of our

roposed approach. On the other hand, according to our results, the Rie-

annian regularization (encouraging consecutive diffusion times to use

imilar rotation matrices) that we initially included in our approach did

ot show an important contribution to the prediction of FC. This regular-

zation was used to encourage consecutive diffusion times to use similar

otation matrices, however, our results showed that the kernels that con-

ributed the most to the prediction of brain function had very dissimilar

otation matrices, whereas the remaining kernels that barely improved

he quality of our predictions had similar rotations. This dichotomy may

xplain the little contribution of the Riemannian regularization term to

he final predictions. 

In conclusion, our results show that only a few kernels are neces-

ary to reliably reconstruct functional connectivity from a model of the

tructural connectome. Moreover, our results underscored that visual,

omatomotor and attention networks require generally shorter com-

unication paths than transmodal systems such as the default mode,

rontoparietal and limbic networks. The requirement of larger diffusion

imes in these networks highlights the reliance on more polysynaptic

ommunication mechanisms as we go up the putative cortical hierar-

hy. Finally, the proposed approach produced highly competitive pre-

ictions vis-a-vis current state-of-the-art methods, and this performance

mprovement was observed across different experimental settings ( i.e.,

cross different datasets, parcellation schemes, and parcellation granu-

arities). Overall, our findings support a likely contribution of polysy-

aptic signaling in macroscale brain function, especially in transmodal

ortices and thus outline potential mechanisms underlying gradients of

tructure-function coupling in human cortical networks. 

ode and data availability 

The code for the proposed framework is publicly available at

ttps://github.com/MICA-MNI/micaopen/tree/master/sf _ prediction . 

he HCP and MICs dMRI and rs-fMRI data are publicly available

t https://www.humanconnectome.org/ and https://portal.conp.ca/

ataset?id = projects/mica-mics . 
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