000910611 001__ 910611
000910611 005__ 20240625095031.0
000910611 0247_ $$2doi$$a10.1103/PhysRevB.105.115104
000910611 0247_ $$2ISSN$$a1098-0121
000910611 0247_ $$2ISSN$$a2469-9977
000910611 0247_ $$2ISSN$$a0163-1829
000910611 0247_ $$2ISSN$$a0556-2805
000910611 0247_ $$2ISSN$$a1095-3795
000910611 0247_ $$2ISSN$$a1538-4489
000910611 0247_ $$2ISSN$$a1550-235X
000910611 0247_ $$2ISSN$$a2469-9950
000910611 0247_ $$2ISSN$$a2469-9969
000910611 0247_ $$2Handle$$a2128/32262
000910611 0247_ $$2WOS$$aWOS:000766641700003
000910611 037__ $$aFZJ-2022-03989
000910611 082__ $$a530
000910611 1001_ $$0P:(DE-Juel1)176544$$aZhang, Xue-Jing$$b0$$ufzj
000910611 245__ $$aGeneral superexchange Hamiltonians for magnetic and orbital physics in e<sub>g</sub> and t<sub>2g</sub> systems
000910611 260__ $$aWoodbury, NY$$bInst.$$c2022
000910611 3367_ $$2DRIVER$$aarticle
000910611 3367_ $$2DataCite$$aOutput Types/Journal article
000910611 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1667386445_24053
000910611 3367_ $$2BibTeX$$aARTICLE
000910611 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910611 3367_ $$00$$2EndNote$$aJournal Article
000910611 520__ $$aMaterial-specific super-exchange Hamiltonians are the key to studying spin and orbital physics in strongly correlated materials. Recently, via an irreducible-tensor operator representation, we derived the orbital superexchange Hamiltonian for t<sup>1</sup><sub>2g</sub> perovskites and successfully used it, in combination with many-body approaches, to explain orbital physics in these systems. Here, we generalize our method to e<sup>n</sup><sub>g</sub> and t<sup>n</sup><sub>2g</sub> systems at arbitrary integer filling n, including both spin and orbital interactions. The approach is suitable for numerical implementations based on ab initio hopping parameters and realistic screened Coulomb interactions and allows for a systematic exploration of superexchange energy surfaces in a realistic context.
000910611 536__ $$0G:(DE-HGF)POF4-5215$$a5215 - Towards Quantum and Neuromorphic Computing Functionalities (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000910611 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x1
000910611 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910611 7001_ $$0P:(DE-Juel1)130763$$aKoch, Erik$$b1$$ufzj
000910611 7001_ $$0P:(DE-Juel1)130881$$aPavarini, Eva$$b2$$eCorresponding author
000910611 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.105.115104$$gVol. 105, no. 11, p. 115104$$n11$$p115104$$tPhysical review / B$$v105$$x1098-0121$$y2022
000910611 8564_ $$uhttps://juser.fz-juelich.de/record/910611/files/PhysRevB.105.115104.pdf$$yOpenAccess
000910611 8564_ $$uhttps://juser.fz-juelich.de/record/910611/files/paper.pdf$$yOpenAccess
000910611 909CO $$ooai:juser.fz-juelich.de:910611$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000910611 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176544$$aForschungszentrum Jülich$$b0$$kFZJ
000910611 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130763$$aForschungszentrum Jülich$$b1$$kFZJ
000910611 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130881$$aForschungszentrum Jülich$$b2$$kFZJ
000910611 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5215$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000910611 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x1
000910611 9141_ $$y2022
000910611 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000910611 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-05-04
000910611 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000910611 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000910611 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910611 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000910611 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000910611 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000910611 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000910611 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11
000910611 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-11
000910611 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-11
000910611 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2021$$d2022-11-11
000910611 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-11
000910611 920__ $$lyes
000910611 9201_ $$0I:(DE-Juel1)IAS-3-20090406$$kIAS-3$$lTheoretische Nanoelektronik$$x0
000910611 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000910611 9801_ $$aFullTexts
000910611 980__ $$ajournal
000910611 980__ $$aVDB
000910611 980__ $$aUNRESTRICTED
000910611 980__ $$aI:(DE-Juel1)IAS-3-20090406
000910611 980__ $$aI:(DE-Juel1)JSC-20090406
000910611 981__ $$aI:(DE-Juel1)PGI-2-20110106