Hauptseite > Publikationsdatenbank > General superexchange Hamiltonians for magnetic and orbital physics in e<sub>g</sub> and t<sub>2g</sub> systems > print |
001 | 910611 | ||
005 | 20240625095031.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevB.105.115104 |2 doi |
024 | 7 | _ | |a 1098-0121 |2 ISSN |
024 | 7 | _ | |a 2469-9977 |2 ISSN |
024 | 7 | _ | |a 0163-1829 |2 ISSN |
024 | 7 | _ | |a 0556-2805 |2 ISSN |
024 | 7 | _ | |a 1095-3795 |2 ISSN |
024 | 7 | _ | |a 1538-4489 |2 ISSN |
024 | 7 | _ | |a 1550-235X |2 ISSN |
024 | 7 | _ | |a 2469-9950 |2 ISSN |
024 | 7 | _ | |a 2469-9969 |2 ISSN |
024 | 7 | _ | |a 2128/32262 |2 Handle |
024 | 7 | _ | |a WOS:000766641700003 |2 WOS |
037 | _ | _ | |a FZJ-2022-03989 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Zhang, Xue-Jing |0 P:(DE-Juel1)176544 |b 0 |u fzj |
245 | _ | _ | |a General superexchange Hamiltonians for magnetic and orbital physics in eg and t2g systems |
260 | _ | _ | |a Woodbury, NY |c 2022 |b Inst. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1667386445_24053 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Material-specific super-exchange Hamiltonians are the key to studying spin and orbital physics in strongly correlated materials. Recently, via an irreducible-tensor operator representation, we derived the orbital superexchange Hamiltonian for t12g perovskites and successfully used it, in combination with many-body approaches, to explain orbital physics in these systems. Here, we generalize our method to eng and tn2g systems at arbitrary integer filling n, including both spin and orbital interactions. The approach is suitable for numerical implementations based on ab initio hopping parameters and realistic screened Coulomb interactions and allows for a systematic exploration of superexchange energy surfaces in a realistic context. |
536 | _ | _ | |a 5215 - Towards Quantum and Neuromorphic Computing Functionalities (POF4-521) |0 G:(DE-HGF)POF4-5215 |c POF4-521 |f POF IV |x 0 |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Koch, Erik |0 P:(DE-Juel1)130763 |b 1 |u fzj |
700 | 1 | _ | |a Pavarini, Eva |0 P:(DE-Juel1)130881 |b 2 |e Corresponding author |
773 | _ | _ | |a 10.1103/PhysRevB.105.115104 |g Vol. 105, no. 11, p. 115104 |0 PERI:(DE-600)2844160-6 |n 11 |p 115104 |t Physical review / B |v 105 |y 2022 |x 1098-0121 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/910611/files/PhysRevB.105.115104.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/910611/files/paper.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:910611 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)176544 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)130763 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)130881 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-521 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Materials |9 G:(DE-HGF)POF4-5215 |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 1 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2021-05-04 |
915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-05-04 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-11 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-11 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV B : 2021 |d 2022-11-11 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2022-11-11 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-3-20090406 |k IAS-3 |l Theoretische Nanoelektronik |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 1 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IAS-3-20090406 |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
981 | _ | _ | |a I:(DE-Juel1)PGI-2-20110106 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|