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Material-specific super-exchange Hamiltonians are the key to studying spin and orbital physics in strongly
correlated materials. Recently, via an irreducible-tensor operator representation, we derived the orbital superex-
change Hamiltonian for tzlg perovskites and successfully used it, in combination with many-body approaches, to
explain orbital physics in these systems. Here, we generalize our method to €; and 7;, systems at arbitrary integer
filling n, including both spin and orbital interactions. The approach is suitable for numerical implementations
based on ab initio hopping parameters and realistic screened Coulomb interactions and allows for a systematic
exploration of superexchange energy surfaces in a realistic context.
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I. INTRODUCTION

In strongly correlated transition-metal oxides, spin- and
orbital-ordering or spin- and orbital-liquid phenomena are
often studied with low-energy superexchange Hamiltonians,
derived from multiband Hubbard models in highly symmetric
cases and in a basis of pseudospin operators [1-4]. This cap-
tures the essence of the Kugel-Khomskii [1] superexchange
mechanism but misses the important material dependencies.
An alternative approach starts from material-specific Hub-
bard models constructed from ab initio calculations, solving
them using many-body techniques, e.g., via the dynamical
mean-field theory (DMFT) [5,6]. This method is very pow-
erful and has allowed us to study superexchange-driven phase
transitions [7—10] for the actual materials, identify their mech-
anisms, and calculate the associated energy gains [11] and
response functions [12]. For exploring entire energy surfaces,
identifying possible unusual symmetry-breaking ordering, or
calculating spin- and orbital-wave spectra, the systematic so-
lution of realistic multiorbital Hubbard models is, however,
computationally very costly.

Recently, we have shown that integrating the two ap-
proaches can lead both to further insights and efficiency
increases, providing guidance for limiting heavy many-body
calculations only to targeted cases. This made it possible to
clarify the origin of orbital ordering in the tzlg perovskites [13].
In this paper, we generalize the approach to ¢, and 15, systems
with arbitrary n, including the spin-dependent terms of the
superexchange Hamiltonian. In addition to giving analytical
expressions, our method enables lightweight numerical imple-
mentations for realistic Coulomb interactions in combination
with ab initio Wannier functions and is thus the ideal tool for
the study of strongly correlated materials of any symmetry in
a realistic setting.

This paper is organized as follows. In Sec. II, we introduce
the general formalism by applying it to a well-known case, the
single-band Hubbard model. In Sec. I1I, we derive the general
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analytic formulas of superexchange couplings for ¢, systems.
In Sec. IV, we do the same for 1y, systems. Comprehensive
tables summarizing the main results are provided in each case.
In Sec. V, we discuss energy surfaces. Finally, in Sec. VI, we
present our conclusions.

II. FORMALISM

The superexchange Hamiltonian has the form:
N 1 i
A = ziZszg, M

where i and j are neighboring sites coupled via hopping in-
tegrals. This Hamiltonian acts in the subspace of states with
|ni, nj), where n; and n; are the site occupations with the con-
straint n;+n; = N = 2n, where n is the number of electrons
per site. From strong-coupling second-order perturbation the-
ory, Eq. (1) can be written as

Hsg = —Hr(Hy — Eo)~'Hr,
so that
Ay, = —Ar(P; + Pj)Hr.

Here, P, ; is an operator which projects, with an energy de-
nominator, to atomic excited states of type |n;+1, n;—1), and
Hr is the hopping part of the Hubbard Hamiltonian from
which the superexchange interaction is derived, while Hy is
the electron-electron repulsion.

Let us start from the well-known case of magnetic ex-
change for the single-band Hubbard model:

H=- Z Z el cio +U Z Aty )
i

o i
— —

Hr Hy

where 7, = ¢} c¢iy, t%/ is the hopping integral and U the
screened Coulomb parameter. Since the atomic limit of the
half-filled Hubbard Hamiltonian has only spin degrees of free-
dom, one can write the associated exchange Hamiltonian in an
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irreducible tensor basis as
84> v ij Aq v
SE_ZZ qqu S )

where g = 0, 1 is the rank of the operators and v the asso-
ciated components. For g = 0, the only component is v = s,
while for ¢ = 1, we have instead v = x, y, z in the real har-
monics representation. For convenience, we normalize the
tensors such that

> Oleis (57) cly10) = 1. @)

With this convention, the irreducible tensors are

1
A0,s T
57 =—=) ¢/ Ci, 5)
A
Zcm<a|o~ 0" )Cior (6)

(ra’

where 6, is the v = x, y, z Pauli matrix. At half-filling (n; =
nj = 1), we define the projectors as

A oy )iloe—)jj{a—| oyl
P = , 7
J Z Ea++Ea7—2E0 M

a0

where |y ); are atomic (site i) multiplets with n; & 1 elec-
trons, quantum number oy and energy E,, . In the case of the
single-band Hubbard model, |« ); and |«_); are, respectively,
the doubly occupied and the vacuum state; in general, how-
ever, o, and «_ will label several excited states with different
energies. Here, Ej is the energy of the ground state with N =
n; +n; = 2 electrons in the atomic limit, here, Eg = 0. The
tensor elements in Eq. (3) are obtained using the orthogonality
properties of irreducible tensors. To this end, we multiply by
a pair of irreducible operators, one for site i and one for site j,
and trace over all states in the atomic ground multiplet. This
yields

Tf[g?'sfg’sﬁ'r(pij + pj,‘)ﬂT]

Déj; 0s — — 2 2
| () 6]
_
= o
and
b _Tr[ﬁl!‘vﬁjl."’,HT(pij + Pj)Hr|
T R 6]
oI
~Tu v

All crossed terms involving a tensor with ¢ =0 and one
with ¢ = 1 vanish due to the spin-rotational invariance of the
Hubbard model. This gives the expected result:

|t Lval, 0,540,
A~ VA v Al S A N
HSE =2 U E 5,78 —587°8;

v

tl]2 s
L U' <s S —”%), )

where S; is the usual spin operator.

III. TWO-BAND HUBBARD MODEL

We now generalize to the case of the two-band e, Hubbard
model:

H=- Z Z tl;jm zl mo Cjm'e +ﬁU’ ©)
— =

Hy
where m = x*>—y? and 3z>—r2. The t v are effective hopping
integrals, obtained by downfolding the high-energy degrees
of freedom. In transition-metal systems, these include, for
example, p bands of oxygen or fluorine ions which build the

bridge between two d transition metal atoms. We adopt the
Kanamori form of the Coulomb interaction:

ﬁU =U Z Z ﬁi,mTﬁi,mi
+ % Z Z Z (U -2J - JSU,U’)ﬁi,maﬁi,m’o’

i m#m' oo’

§ 2 S .
-J Ci,mTci,m\Lcl»m’TClvm/i

i m#Em

—J Z Z CimTCi,mW:mei,m'T, (10)

i m#Em

where the last two terms are the pair-hopping and spin-flip
interaction. For e, electrons, the Kanamori interaction is the
exact atomic limit Coulomb tensor. A detailed derivation can
be found in Ref. [14].

As observed already above, terms with different spin ranks
are decoupled due to the spin rotational invariance of the
Hamiltonian, so that we can perform the calculation in two
steps. Like in the single-band Hubbard model, the half-filled
case has no orbital degeneracy since the Hund’s rule ground
multiplet is the state with § = 1 and therefore is not relevant in
the context of orbital physics. Thus, here, we focus on n = 1
and 3. First, we consider the pure orbital superexchange,
describing the paramagnetic phase (spin rank ¢ = 0 terms).
In the magnetic phase, additional superexchange couplings
(spin rank g = 1 terms) are present, which influence both the
magnetic and orbital states.

A. Paramagnetic case,n = 1

The superexchange terms with spin rank ¢ = 0 can be

expressed as
AT ij At
SE_Z:Z: Dr//.lp.j ’ (11)
rr’

where operator " is the 1 component of the tensor with
orbital rank r. In the e; configuration, it is convenient to define
the orbital pseudospin states as

|7y =132=r),  IN) =

An atomic state with a single electron (n = 1) is then given
by |m,o) = c} ,10), where m = | /), |\\) is the orbital and
o the spin component. We normalize the tensors such that

> 0t (7)7 ¢ ql0) = 1. (13)

mo

2 —y%). (12)
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This leads to the expressions:

=—an o (14)

chma mm lm(T’ (15)

mm e

where 6% o AT€ the elements of the Pauli matrices. We now
split the tensor elements appearing in Eq. (11) in contribu-

tions from excited multiplets with doubly (Br ) and singly
ij
(C,,.r7) occupied orbitals:
ij — R ij
Dru,r’/f. Bru ru + Cru ru” (16)

The doubly-occupied-orbital multiplets for site i are

i i i i
ci,3zzfr2’rci,3z27r2¢ + Ciqxzf)’zTcivxz
|0,0), =
V2
i i

o ci,?)zz—rzj*ci,?az2 -2y

10, 0), =

=2 i0),  (17)

i ¥
Ci,xz—szCi,xz—yzl |0)
V2 ’
and have Coulomb energies equal, respectively, U + J and
U — J. Summing up all terms of this kind, we find

=22

aybycid,
+ (irp) < (jr'w). (19)

The labels ay, by, c1, d; indicate orbital quantum numbers,
and

(18)

l] ij
irp JrM L1 di “ay, blg
"

ru ru alcl b d, U

<aa O—|%ir,ﬂ|ca 6)
Ar )2
ng <0|Ci,ma (T,‘rﬂ) C[‘:mg|0>

where o = 0, = o,. Since the operator £ traces over spin,
the matrix element in Eq. (20) is spin independent. Finally, the
energy denominators are collected in

irp __
Tac -

; (20)

8 = v18,.01v0(1-8,.0), (2]
with
vo=3(fi—f-1), vi=3(fi+fo1) (22)
and
Jo= ;. (23)
14+ aJ/U

Using the definition in Eq. (20) to treat the operators as
matrices, we can rewrite the result in a compact form:

i —_ Z (i i W g B
By = Utr(t L S U |

+ (irp) < (jr'n), (24)

where the (lowercase) trace is over orbital indices only. The
second term in Eq. (16) arises from the remaining four excited
multiplets:

1,0) =c' 0), (25)

i,3z22—r2o lx2 ya'

cf cf +cf cf
i,322—r21 " ix2—y2) i,322—r2) " ix2—y24 0

V2

I1,0) = ), (26)

¥ i _
ci,3227r2Tci,x37y2¢ ¢

NG
They correspond to the triplet and singlet states, which have

Coulomb energies equal to U —3J and U — J. In matrix
form, it is given by

3‘3227r2\LC1Tx27y2T
|0,0) = : : 0).  (@27)

ij _ irpgd,j =X jr' i X Ji1£C
Cru,r’u’ = U[tr(r t"o't o't )]Eﬂ/

+ (irp) < (jr'u), (28)

where o* is a Pauli matrix, and

c U3
Sﬂ = v28;4,0 - ?(1 - 8#,0)’ (29)

with the energy denominators:

v =106fa+ 1), vi=3Gfa—fo). (30)

The irreducible elements of the orbital superexchange tensor
D'/ are collected in Table 1.

In the simple limit of a cubic perovskite, along the quanti-
zation axis Z, the only relevant effective hopping integral is the
ddo hopping integral ¢ between two 3z> — 2 orbitals. This
approximation is often used for describing the low-energy
bands of LaMnO3 or KCuF;. Simplifying further by setting
J = Oyields

42

ij — irp jr w
rp,rpd T U Talal aya; 8d| 322—r2 (SM_()(SU/,Q, (31)
aip
ij 4 it v
C”MJ’W = _7 ‘Cala]aa] a Yy 814.,08/4’,0' (32)
apaz

It follows that the only nonzero terms are

r 3T . r
Dllj 1z _4’ DgYOY_ T’ Dé)js,lz:_Z’
where " = 4t2/U . This gives, of course, the usual Kugel-
Khomskii [1,15] Hamiltonian:

i D ain: AR @ Al
i =—(0.0! -3 --—0/-0.—). (33
Sk 4( 5 Tdmng o 2mp C 72n ) 33

where Oé = %61 is the Z component of the conventional orbital
pseudospin operator, and n; = 1. The expression along the

other directions is obtained by rotating the quantization axes.

B. Magnetic terms, n = 1

Spin rank g = 1 tensor elements can be obtained in an
analogous way. The irreducible tensors here are

A() s;1v
= : :Cl mo a a’cl mo’ s (34)
Al NN 5
) Z Z CimoOmm 90,0/ Cima’s (35)
mm' oo’

and are normalized as rank g = 0 operators. The results ob-
tained are given in Table I. One may notice that the only
change with respect to g = 0 is the (U, J)-dependent denom-
inators in the table, which yield the transformation V — V.
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TABLE I. Key tensor elements for the ei, and ez, configuration and spin ranks ¢ = 0 and 1. The elements for the ei, configuration are
obtained setting a minus in front of all linear terms, i.e., those for which r = 0, ' # 0, or ¥ = 0, r # 0. The elements for imaginary tensors
must be multiplied by i (linear terms, involving a single operator) or i x i (for products of two operators). The prefactors are obtained from

the weights: vy = %(fl —f), v = %(fl + fo1), v = i(3f73 + f-1), and vz = %(Sf,g — f-1). The rest of the matrix elements are given

by symmetry: Difu, = sMsMer'M s where s, = 1 is for real operators and s, = —1 for imaginary ones. Since the model is rotationally

invariant for spins, ¢ = 1, v = x, y, z elements are identical. They can be obtained from the table for ¢ = 0, replacing Vo —> Vo, Vi — V1,
V2 —> V,, and V3 — V3. All hopping integrals are defined as ¢ , and are assumed to be real, as typically is the case in the absence of

spin-orbit interaction.

! 1 3 ij
ru ru e, e, Dy e x U2
2 2 2 2
Os Os W =W (t37,2—r2.322—r2 + txzfvz,xzfvz + t3zz,r2_xz,yz + txz,yzjzz,rz)
2 2 2 2
Os 1z =V +V (tkz,rzjzz,,z o e ptla ps0 0~ t3zz,,2vxz,yz)
0s 1 x =V +V 2ty 223220 20 0 Fha o pha p30,2)
2 2 2 2
1z 1z +Vs +V2 ([32242,32242 + txz,yzw)@,yz - [32242,):27,\'2 - txz,yz’kz,rz)
1x 1x +V, +V, 2t2-232_2h2 p o F o 00 pto 30 ,0)
1z 1x +V, +V, 232232 2l 20 0 —ha_p g pha p30_,2)
ly ly +Vs +V; 2tz2_232-2ba_p a0 — B2 20 pha 30 ,2)
= — ut2un _ [i+2f+3f3 —_u _ fitfa
q=0 W="52=""5—" Vi=3="5"
—v 3f 3— 3f 3-2f_
V, = szTn - % Vs = in o w
- V2 —f ~ L ~ t2f—f,
q=1 VO:_fl 141 3P ==V, szfl4f1’ V3:f1 ﬁl 1

C. The n = 3 case

The superexchange Hamiltonian for the ez configuration
can be obtained from the n = 1 case by using the electron-hole
transformation of the atomic-limit Hamiltonian. The pseu-
dospin states are, in this case, defined as

L) = ¢l pnClan o€l 10), (36)

IN) =€l €€l a2 10), 37)

and can be viewed as hole orbitals. GoinF to the hole repre-
sentation, the final change in the tensor elements amounts to
an extra minus in front of terms with either r = 0, ¥’ # 0 or
r" =0, r # 0, as explained in Table I.

IV. THREE-BAND ¢, MODEL

The family of tgg materials includes, for example, titanates,
vandates, ruthenates, and iridates, compounds in the n =
1,2,4, and 5 electronic configuration, respectively. Also, in
the 1,4 case, half-filled systems (n = 3) have no orbital degrees
of freedom since the Hund’s rule ground multiplet is the § = %
state and therefore are orbitally trivial. For n = 2 and 4, the
ground multiplet is usually the high-spin state S = 1 with
orbital degeneracy three. The orbital degeneracy is three also
for the n =1 and 5 atomic ground states. In all cases, the
maximum orbital rank is thus » = 2. The starting Hubbard
model is the #,, three-band Hubbard Hamiltonian. The latter
has the same form given in Egs. (9) and (10) except that
the orbital index m now takes the values xz, xy, yz, and the
screened Coulomb integrals U and J in Eq. (10) differ in value
from those for the e, orbitals. This is discussed in detail in
Ref. [14], where the integrals in each case are derived starting

from atomic functions. The effective hopping integrals in this

case are typically the ddm terms between Wannier functions
into which oxygen p states or other high-energy states have
been downfolded. As in the e, case, we calculate first the
paramagnetic (¢ = 0) and then the magnetic (¢ = 1) terms of
the superexchange Hamiltonian.

A. Paramagnetic terms,n = 1, 2

We define the ¢ = 0 tensorial operators as follows:
AL rE:E:T AT
Ti - a'u’ Ci,m(; <m|0M |m >Ci,l71/(7 .
mm' o

The matrix elements (m|0, |m’) and prefactors «,, are listed in
Table II. In analogy with the e, case, we normalize the tensors

such that
> Oleims (7)€} 100 = 1.

mo
For n =1, the formula for ¢ = 0 can already be found in
Ref. [13]; the tensor elements are reported in Tables III and
IV with the notation adopted in this paper.

Here, we thus present the derivation for the more compli-
cated n = 2 case, with total spin S = 1. We define the orbital
pseudospin states as |m3) = |m;mj;), where m; and m, are the
occupied orbitals, and mj3 is the empty one. The n = 2 triplet
states can then be written as |m3, 03), with

|—1,03) = ¢] 11y €] 1410080, 20

(38)

1 . .
+—=(c] el el el 10850, (39)
\/5 Xyt izl eyl i yz
10,03) = ¢] o€l 010080, 20
Low s -t
+ E(Cz“,szci,xzi + cg,yzici,sz)l())g”%O’ (40)
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TABLE II. Prefactors for the irreducible tensors with g = 0, tfg
case. The small r denotes the orbital quantum number. The rank for
second-order classical tensors is R; it splits the original reducible
tensor of dimension 9 into a scalar, a five-component symmetric and
traceless tensor, and a three-component asymmetric tensor.

R ru o, (m|df, |m')
0 Os n»}/g am‘m’
2 1z % Sm,m’ (Sm,xz - ‘Sm,yz)
2 Ix 27‘1/5 [(gm,xz + 8m.yz)8m’,xy
+(6m"xz + 8/11’,)11 )6m.xy]
2 2 322—7'2 %\/@ Sm,m’(‘sm,xz + Sm,yz - 28;11,xy)
2 2 X2 _y2 % (Sm,xz&n’,yz + (Sm,yzgm’,xz)
2 XZ T\l/i [(gm,xz - ‘Sm,)fz)am’.xy
+(8m’,xz - Sm’ yZ )8m xv]
1 1 y fﬁ [(Sm.xz(sm’,xy - m)18 / ty)
_((Sm’,xztsm,xy - Sm’,yz m,xy)]
1 2 ¥z 2%/5 [(Sm.xz(sm’,xy + Sm,yztsm/.xy)
_(8m’,x28m,xy + Sm’,yz(sm.xy )]
1 2 Xy é (Sm,xzsm’,yz - 5m,y28m’,x1)

|+1,03) = cjmcjm 10)805 26

f< Farchy el el I08m0, @)

where o3 is the spin component of orbital state |m3). In this
basis, the norm of the irreducible tensor operators is

. 25+1
> s, o3l (577 i3, 03) = T (42)
ms3,03

2

We now proceed to calculate the first term in Eq. (16), the
one arising from three-electron states with a doubly occupied

orbital. These can be split into the six § = % states:
Lo N Lo & 2ot & et 10y, 43
™M= E(Ci,m’¢ci,m/¢+Ci,m”¢ci,m”¢)ci,ma| ) (43)
a

with Coulomb energy 3U — 4J and the additional six S = %
states:

1 o 1 ( + ¥
—, =, m) = —=(c;, ..C
2’2 b ﬁ im' - im']
with Coulomb energy 3U — 6J. It is convenient to introduce
the shortcuts:

i i +
_Ci',m”Tci,m/"L)ci,ma |O)’ (44)

(a3, o31%"|c3, 03) 285 + 1
Tr(fiw)z 2

irw
azcs

(45)

and
v =3Hh—fo). v =3(H+N) (46)

The matrix element r”" does not depend on the spin since the
operator traces over the spins; it is also the same for each site,

but we leave the site index i for clarity. We thus obtain

B .= —%[tr(tj’iti”’“ti’jm)
+ D () ()
— (T e () — (2 M)
x tr(t T Y EE - (irp) < (), @7)
where Ef = 18,0 +vo(l —38,0). The second term in

Eq. (16) arises from three-electron states with one electron
per orbital. These are the S = % quartet:

3 30 :
‘E’ 7> = el 100, 8)
3 0 1 1 SN
_ '- + 1 I T
‘5’ 2 > B ﬁ(cz xz0 Ci,yz6 Cixyo |0) + Cixz6 Ciyzo Cixyo 10)

el el el o), (49)

1,XZ20 l ,y20 T i,xy6

with energy 3U — 9J and the two doublets:

1 o
‘5,5> = 0) +cf el el 10)

1,X70 "1,y70 " 1,Xy0

(c.+ cT _ cT

i,x70 71,yz6 T 1,Xy0

Sl

—2¢f el e ~10)), (50)

1,XZ0 "1,y20 "L, XyOo

Lo Lo P el

5’ E . = E(ci,xzaci,yz(r - Ci,xzé'ci,yztr )Ci,xycr |0)’ (51)
with energy 3U — 6J; here, & = —o. Collecting all contribu-
tions, we arrive at the final result:

cY —%(tr{[tr(ri”‘) -

! LA (A s O 1V

+ (irp) < (Gr'u'), (52)

where y,, = v28,.0 + 5 (1 — 8,0) with

=3Q2f 3+ fo),  vs=5(4f3— fo). (53)

The elements of the total superexchange tensor are listed in
Tables IIT and I'V.

Let us now consider the simple limit of cubic perovskites
and the approximation in which the only effective hopping
integrals along a crystal axis direction are the ddm intraorbital
ones. This approximation is often adopted for the description
of 1o, perovskites in simple models. If we define Z as the quan-
tization axis, these are f,; , = t,.,, =t. Setting in addition
J = 0, we obtain the Hamiltonian:

irJ

HSE _ 88n2+58n1,\0,w\0,s+ lf232 22,3212

r 3 Pt T /
1 1A2x—x ~2,x%—y? 1AxyAxy
PEEN AR X N
Spo +28 _ -
n,2 "1(2232 r AOS+%03A23Z r? )’ (54)

The first term, proportional to the product of two r = 0 opera-
tors, does not contribute to determining the ground state; it just
gives an energy shift. With the constraint n,, = n — n,, — n,,,
for a bond along Z, the Hamiltonian reduces to the expected

115104-5



ZHANG, KOCH, AND PAVARINI

PHYSICAL REVIEW B 105, 115104 (2022)

TABLE III. Nonzero tensor elements (spin rank ¢ = 0) for diagonal hopping integrals, tzzg and zzlg configuration. The matrix elements for
imaginary tensors must be multiplied by i (linear terms, involving a single operator) or i x i (for products of two operators). For the 122g con-

figuration, vo = 5(f2 — fo), vi = 3(f2 + fo), v2 = 3(2f 3+ fo), and vs = 3(4f 3 — fy). For the 7}, configuration, wo = 3(f2 — f-1), wy =
%(fz +2f1), wy = %(3f_3 + f-1), and w3 = %(3f_3 — f=1). The rest of the matrix can be obtained by symmetry: D”L = SuSw Dm e
where s, = 1 is for real operators and s, = —1 for imaginary ones. The tensors for spin rank ¢ = 1 can be obtained by replacing W, —> W,

and V; — V;. The couplings W, or V; are identical for tensors with the same R value. All hopping integrals in the table are defined as t,'n/m/

and are real.

ru rou tzlg tzzg DrL v X Uuj/2

0s 0s -Wo =V (A Y A
0s 1z -W =V % (10 = 1322)

0s 27 -W Vi % (1, =200 )
1z 1z +W, +V) (6 + 152

1z 272 +W; +Vs % (Z)?z xz T tv27 )z)
222 22 +W, +V) 5 (e F e +4230)
1x 1x +W, +Vs (txzoxz + byzye yny
2 xz 2 xz +W, +V, (frexz + by ye Mayxy
1x 2xz +W, +V (txz ez = byzy Mayxy

2 x2—y? 2 x2—y? W, +V, 2ty xelyzyz

ly ly +Ws +V3 (Fezxz =+ Iyziye Myxy
2yz 2yz +Ws +V; (fxzoxz F Bz ye Miyny

2 xy 2 xy +Ws +V5 2z xelyz,y:

ly 2yz +Ws +V; (fxzxz = byzy My
Wo = faa+3fa+5f =1tz Vo=5fs+ght 3 =02
Wi=3fs+ Hfa+ih =10, Vi=—ifs+ih+ih= 2”' =
Wo=3fa—fifo - b= 22, Vim 3t o b=

Wi =3fs— Sfa+ =232,

2 5 +
Vi=3fa—Sh+if=23"

Wo=1fs—3f1—35h.
Wi=ifs—5fa—th
Wy =ifos+ 5+ ih

Wi =1fs+ Sfa— b,

Vo = %f3—*fo ih
Vi=—¢ 3fo—3h
Vo= gffa — 5fot i
Vi=ifa+3h—1h

[2,3] limit:
=it 1
SE _ (i Al ~J ~J j i ~J
r - 4 (nxz + nyz + nxz + nyz) +7 4 (nxznxz + nyznyz)
1 . ;
+ Z(C,‘k’xzci,yzcj"yzcj,xz + Cik,yzcl',xzc;,ﬂcj,yz)- (55)

This Hamiltonian is often adopted for studying spin-orbital
physics in titanates and vanadates. In this simplified case, only
two orbitals play a role for a given bond, while in the full
superexchange Hamiltonian, all three orbitals are active.

B. Magnetic case,n =1, 2.

The operators of spin rank ¢ = 1 are defined as

anulv oy ¥ AT I\ AV
e =l 3N el m)8Y o

mm' oo’

with the same Ol; introduced for rank ¢ = 0, so that

> Olcims (£417) ¢l 10) = 1, (56)

mao

and in addition,

> (ms. 31 (41) I3, 03) = 1. (57)

m303

In calculating the norm above, since we restricted the lower-
energy space to the S = 1 multiplet, S = 0 intermediate states
are discarded. The resulting tensor elements can be found
in Tables III and IV for the t21 and t22g cases. As in the e,
case, the Coulomb denominators are modified when the spin
rank changes from zero to one, leading to the transformation
Y —s Vforn=2and W —> W forn = 1, as explained in
Table II1.
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TABLE IV. Additional relevant quadratic (r # 0, ' # 0) and linear terms (r = 0, r’ # 0) for zzlg and tzzg configurations, spin rank g = 0.
The tensors for spin rank ¢ = 1 can be obtained by replacing W; —> W; and V; —> V,. Prefactors and hopping integrals are defined in the

caption of Table III.

r row 1, 13, DZ”/M, x U/2

0s 0s -W, -V (G SR R S LA Y

0s 1x W, -V NG [Creuxe + ey Hizay + (rzse + by yzay + (oyaz + by Miyny]
0s 1z -W -V % (e 13— 1 — 12)

0s 2xz W, -V NG [(rzxe = tizyVizay + (rze = by lyzay + (yz = by Mgy
0s 22—y -W, -V 2z (feeveticve + byeocctyeye + foyactinye)

0s 27 -, -V £ (A2 e~ =22 )

1z 1z -W, -V, (2, +1% )

1z 222 +W, +V, % [y — 15 — 2062 — 12 )]

27 27 +W, +V, 3 [+ 10— 200k + 1 1 100

1z 1x +W, +V, V2 [(fazes F By My — (Byzee =+ ey Myzny]

1z 2xz +Ws +V V2 [(fazoxs = Lezye Moy — (Byzne — Byzye yzny]

1z 2 x2—y? +W, +V, 2tazxetizyz — byzazlyz,ye)

222 1 x +W, +V» 2 [tz + e ey + (e + ey e oy — 2z + e gy
22 2 xz W, +V, 2 [(roe = teoy oy + (hone = Boy ey — 2 — Loy My ]
27 2x7—y? +W, +V, NG (terxetxeye F byzxelyzy: — 2Heyxelivy:)

1x 1x +Ws +V [(fazye F yze Mgy F (xzy F Byziy) (e + Layye)]

1x 2xz +W, +V5 [(=freyz + Bz Mayay + (Bezy + byeay ) Beye — ayyz)]
2xz 2xz -W ) [(Freye + Bz ayny — (rzy = ey (ayne — Layyz)]

2 x% —y? 2 x2—y? +W, +V, 2z yelyene

1x 2 x2—y? W, +V, V2 [(teenz + bzt + (e + oy oyce]

2xz 25—y +W; +V; V2 [(Fazxe = bz Mgz + (e = by iy yaz]

C. The n = 4 and 5 case

For n = 5 and 4, electron-hole transformation of the atomic
states yields the corresponding changes. To obtain the same
prefactors (aside from a sign) for spin operators with rank
zero, one must then also replace n; —> 6—n;, yielding the
number of holes, in the definition. As in the e, case, in the
hole representation, the only modification with respect to the
analogous electron case is the change of sign in the terms
which mix operators with orbital rank zero and higher.

V. ENERGY SURFACES

It is now easy to use the superexchange Hamiltonians to
calculate energy surfaces in the static mean-field approxima-
tion. We use as an example the case of tzlg perovskites in
the GdFeOs;-type structure, for which we performed extensive
many-body calculations based on DMFT [13]. For the calcu-
lations, we use hopping integrals for f,, Wannier functions,
obtained ab initio via the linearized augmented plane-wave
method, as implemented in the WIEN2K code [16]. We define
the most occupied orbital at a Ti site as

0,¢) =—|n—0,¢ £m)

=siné cos ¢|xz) + cosB|xy) + sin O sin p|yz). (58)

The orbitals for equivalent Ti sites in the unit cell are related
via space-group symmetries; in the GdFeOs-type structure,
with four atoms per unit cell, if at site Ti; the most occupied
orbital is |0, ¢), the corresponding states at sites 2, 3, and 4,
where site 3 is on top of site 1 and site 4 on top of 2, are given
by, respectively, |0, )2 =10, 5 — @)1, 10, )3 =1—06,¢)1,
and |0, ¢)4 = |—0, 5 — ¢). Thus, the superexchange energy
gain for orbital ordering in the paramagnetic phase is

>
(4

—ab st —c /7
AE@©.¢)= Y (8D}, " 1" +4D,, 1" 7).
ru,r'

where t/" = (0, $|""|0, ¢);, and the sum is for r + 7' > 0.
Furthermore,

Tab 2 : i+5 ii—% it i
) (Dm,r’u’ + Dm,r’u’ + Dru,r’w + Dru,r’u’)’
i=j,j+2
D¢ _ l (Dii+2 + pi-t )
' Ty T ')
i=j,j+%

Analogous expressions can be written for the ferromagnetic
and antiferromagnetic phases. In Fig. 1, we show the resulting
energy surfaces as a function of # and ¢, in the paramag-
netic, antiferromagnetic, and ferromagnetic cases, using the
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150

- YTiOg I 1 ¢
100 [ OcF=55° ¢cr=97° 1 F

A E (meV)

[ LaTiO, 1t
100 [ O¢p=52° ¢cp=54° 1 F

S
)
E
L
<
-100 C | | 1 - | . E 1 1 .
150 T T T T T
- ; F o= 0° 120°] ——
p Cubic 1 P 135° 1 f ]
100 1 F 4 150° 1 ¢ E

A E (meV)
3

60° =—— 180°

90° =——

0 F—= > :
-50 - - - - _ .
-1 00 :_ 1 1 _: :_ 1 . C | | .
0° 60° 120° 180°0° 60° 120° 180°0° 60° 120° 180°
0 0 0

FIG. 1. Total superexchange energy gain for YTiO; (top panel), LaTiO; (middle panel), and a hypothetical cubic perovskite with only
ddm hopping integrals (bottom panel). The different lines, as shown in the inset, correspond to ¢ values between 0 and 7. The orange line
is the ¢ yielding the absolute minimum, which is identified by the angles 6y, ¢, given at the bottom of each panel. Equivalent solutions
can be obtained by symmetry via the transformation 6y, ¢y —> 7© — 6y, Ppr + 7. The hopping integrals for YTiO; and LaTiO; have been
obtained ab initio, downfolding oxygen and other high-energy states. The angles defining the lowest energy crystal-field state Ocg, @cr are also
given; the black lines are the ¢ = ¢@cr curves. PM: paramagnetic. AFM: antiferromagnetic (G-type). FM: ferromagnetic. Coulomb parameters:

U=5¢eV,J] =0.64¢V.

same hopping parameters entering the DMFT calculations of
Ref. [13]. Paramagnetic DMFT results show that orbital order-
ing occurs at angles determined by the crystal-field splitting
[13]. For LaTiO3, these angles are Ocg ~ 52° and ¢cp ~ 54°,
while for YTiO3, we found Ocg ~ 55° and ¢cg ~ 97°. They
differ from those that minimize the energy curves in Fig. 1,
as can be seen from the left panels, because in the figure only
superexchange interactions are considered. The curves corre-
sponding to ¢¢cr are shown in black for comparison. Figure 1
explains, however, why the ground state of YTiOj3 is ferro-
magnetic and that of LaTiO3 antiferromagnetic. In the case
of YTiOs, the angles Ocp, ¢cr are close to those yielding
the superexchange minimum for ferromagnetism (right top
panel, orange line, angles 6y, ¢v). For the orbital |6cg, ¢cr),
the energy gain for ferromagnetism is thus larger than the
energy gain for antiferromagnetism. For LaTiOs, instead, at

the angles Ocp, ¢cp, ferromagnetism is strongly suppressed
since the associated energy gain is basically zero, while the
energy gain for antiferromagnetism remains sizable. This is in
line with our previous conclusions based on extensive DMFT
studies and the associated calculation of magnetic superex-
change couplings for the orbitally ordered phase [10,17,18].
This behavior is hard to understand in terms of a simple cubic
model (bottom row of the figure), for which paramagnetic,
ferromagnetic, and antiferromagnetic structures have minima
at the same angles.

VI. CONCLUSIONS

We have shown how general superexchange Hamiltoni-
ans for correlated materials can be obtained, exploiting the
properties of irreducible tensors. We give the analytical
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formulas for the ¢; and #;, cases and provide ready-to-use
tables with the final results. The representation of the superex-
change interaction presented can be obtained numerically for
materials in a straightforward way. Exact diagonalization pro-
vides the atomic states for realistic Coulomb tensors. This
allows us to calculate the superexchange Hamiltonian by pro-
jection, calculating simple traces for hopping integrals from
ab initio Wannier functions and without approximations on
the Coulomb tensor. Using these Hamiltonians, it is possible
to calculate, in mean-field theory, energy surfaces comparing

different types of orbital ordering and determine the energy
gain resulting from such ordering, i.e., the stability of the
ordered phase.
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