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Materials-specific super-exchange Hamiltonians are the key to studying spin and orbital physics
in strongly-correlated materials. Recently, via an irreducible-tensor operator representation, we
derived the orbital super-exchange Hamiltonian for t12g perovskites and successfully used it, in com-
bination with many-body approaches, to explain orbital physics in these systems. Here we generalize
our method to eng and tn2g systems at arbitrary integer filling n, including both spin and orbital in-
teractions. The approach is suitable for numerical implementations based on ab-initio hopping
parameters and realistic screened Coulomb interactions and allows for a systematic exploration of
super-exchange energy-surfaces in a realistic context.

I. INTRODUCTION

In strongly-correlated transition-metal oxides, spin-
and orbital-ordering or spin- and orbital-liquid phenom-
ena are often studied with low-energy super-exchange
Hamiltonians, derived from multi-band Hubbard models
in highly symmetric cases and in a basis of pseudo-spin
operators [1–4]. This captures the essence of the Kugel-
Khomskii [1] super-exchange mechanism, but misses the
important materials dependencies. An alternative ap-
proach starts from materials-specific Hubbard models
constructed from ab-initio calculations, solving them us-
ing many-body techniques, e.g., via the dynamical mean-
field theory [5, 6]. This method is very powerful and has
allowed us to study super-exchange-driven phase transi-
tions [7–10] for the actual materials, identify their mech-
anisms, calculate the associated energy gains [11] and
response functions [12]. For exploring entire energy sur-
faces, identifying possible unusual symmetry-breaking or-
dering, or calculating spin-wave and orbital-wave spectra,
the systematic solution of realistic multi-orbital Hubbard
models is however computationally very costly.

Recently we have shown that integrating the two ap-
proaches can lead both to further insights and efficiency
increases, providing guidance for limiting heavy many-
body calculations only to targeted cases. This made it
possible to clarify the origin of orbital ordering in the
t12g perovskites [14]. In the present paper we generalize
the approach to eng and tn2g systems with arbitrary n, in-
cluding the spin-dependent terms of the super-exchange
Hamiltonian. In addition to giving analytical expres-
sions, our method enables light-weight numerical imple-
mentations for realistic Coulomb interactions in combina-
tion with ab-initio Wannier functions, and it is thus the
ideal tool for the study of strongly correlated materials
of any symmetry in a realistic setting.

The manuscript is organized as follows. In Section II
we introduce the general formalism by applying it to a
well known case, the single-band Hubbard model. In sec-
tion III we derive the general analytic formulas of super-
exchange couplings for eng systems. In section IV we do

the same for tn2g systems. Comprehensive tables sum-
marizing the main results are provided in each case. In
section V we discuss energy surfaces. Finally, in section
VI we present our conclusions.

II. FORMALISM

The super-exchange Hamiltonian has the form

ĤSE =
1

2

∑
ij

Ĥij
SE, (1)

where i and j are neighboring sites coupled via hop-
ping integrals. This Hamiltonian acts in the subspace
of states with |ni, nj〉, where ni and nj are the site occu-
pations with the constraint ni+nj = N = 2n, where n is
the number of electrons per site. From strong-coupling
second-order perturbation theory, (1) can be written as

ĤSE =− ĤT(ĤU − E0)−1ĤT

so that

Ĥij
SE =− ĤT(P̂ij + P̂ji)ĤT.

Here P̂ij is an operator which projects, with a energy de-
nominator, to atomic excited states of type |ni+1, nj−1〉,
and ĤT is the hopping part of the Hubbard Hamilto-
nian from which the super-exchange interaction is de-
rived, while ĤU is the electron-electron repulsion.

Let us start from the well-known case of magnetic ex-
change for the single-band Hubbard model

Ĥ = −
∑
σ

∑
i,j

ti,jc†iσcjσ︸ ︷︷ ︸
ĤT

+U
∑
i

n̂i↑n̂i↓︸ ︷︷ ︸
ĤU

, (2)

where n̂iσ = c†iσciσ, ti,j is the hopping integral and U
the screened Coulomb parameter. Since the atomic limit
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of the half-filled Hubbard Hamiltonian has only spin de-
grees of freedom, one can write the associated exchange
Hamiltonian in an irreducible tensor basis as

Ĥij
SE =

∑
qν,q′ν′

ŝq,νi Dij
qν,q′ν′ ŝ

q′,ν′

j , (3)

where q=0, 1 is the rank of the operators and ν the asso-
ciated components. For q=0 the only component is ν=s
while for q=1 we have instead ν=x, y, z in the real har-
monics representation. For convenience we normalize the
tensors such that∑

σ

〈0|ciσ
(
ŝq,νi

)2
c†iσ|0〉 = 1. (4)

With this convention the irreducible tensors are

ŝ0,s
i =

1√
2

∑
σ

c†iσciσ, (5)

ŝ1,ν
i =

1√
2

∑
σσ′

c†iσ〈σ|σ̂
ν |σ′〉ciσ′ , (6)

where σ̂ν is the ν=x, y, z Pauli matrix. At half-filling
(ni=nj=1) we define the projectors as

P̂ij =
∑
α+α−

|α+〉i|α−〉j j〈α−| i〈α+|
Eα+

+Eα−−2E0
(7)

where |α±〉i are atomic (site i) multiplets with ni±1 elec-
trons, quantum number α± and energy Eα± . In the case
of the single-band Hubbard model, |α+〉i and |α−〉i are,
respectively, the doubly occupied and the vacuum state;
in general, however, α+ and α− will label several excited
states with different energies. E0 is the energy of the
ground state with N=ni+nj=2 electrons in the atomic
limit, here E0 = 0. The tensor elements in (3) are ob-
tained using the orthogonality properties of irreducible
tensors. To this end we multiply by a pair of irreducible
operators, one for site i and one for site j, and trace over
all states in the atomic ground multiplet. This yields

Dij
0s,0s = −

Tr

(
ŝ0,s
i ŝ0,s

j ĤT(P̂ij + P̂ji)ĤT

)
Tr
(

(ŝ0,s
i )2 (ŝ0,s

j )2
) = −2

|ti,j |2

U

and

Dij
1ν,1ν′ = −

Tr
(
ŝ1,ν
i ŝ1,ν′

j ĤT(P̂ij + P̂ji)ĤT

)
Tr
(

(ŝ1,ν
i )2 (ŝ1,ν′

j )2
) = 2

|ti,j |2

U
δν,ν′ .

All crossed terms involving a tensor with q=0 and one
with q=1 vanish due to the spin-rotational invariance of
the Hubbard model. This gives the expected result

Ĥij
SE =2

|ti,j |2

U

(∑
ν

ŝ1,ν
i ŝ1,ν

j − ŝ
0,s
i ŝ0,s

j

)
=4
|ti,j |2

U

(
Si · Sj −

ninj
4

)
, (8)

where Si is the usual spin operator.

III. TWO-BAND HUBBARD MODEL

We now generalize to the case of the two-band eg Hub-
bard model

Ĥ = −
∑
σ

∑
ij

ti,jm,m′c
†
i,mσcj,m′σ︸ ︷︷ ︸

ĤT

+ĤU , (9)

where m=x2−y2 and 3z2−r2. The ti,jm,m′ are effective
hopping integrals, obtained by downfolding the high-
energy degrees of freedom. In transition-metal systems,
these include, for example, p bands of oxygen or fluo-
rine ions which build the bridge between two d transi-
tion metal atoms. We adopt the Kanamori form of the
Coulomb interaction ĤU , i.e.

ĤU=U
∑
i

∑
m

n̂im↑n̂im↓ (10)

+
1

2

∑
i

∑
m 6=m′

∑
σσ′

(U − 2J − Jδσ,σ′)n̂imσn̂im′σ′

−J
∑
i

(
c†im↑c

†
im↓cim′↑cim′↓ + c†im↑cim↓c

†
im′↓cim′↑

)
For eg electrons this is the exact atomic limit Coulomb
tensor. A detailed derivation can be found in Ref. [13].

As observed already above, terms with different spin
ranks are decoupled due to the spin rotational-invariance
of the Hamiltonian, so that we can perform the calcu-
lation in two steps. Like in the single-band Hubbard
model, the half-filled case has no orbital degeneracy, since
the Hund’s rule ground multiplet is the state with S=1,
and therefore is not relevant in the context of orbital
physics. Thus here we focus on n=1 and n=3. First
we consider the pure orbital super-exchange, describ-
ing the paramagnetic phase (spin rank q=0 terms). In
the magnetic phase additional super-exchange couplings
(spin rank q=1 terms) are present, which influence both
the magnetic and the orbital state.

A. Paramagnetic case, n = 1

The super-exchange terms with spin rank q=0 can be
expressed as

Ĥij
SE =

∑
µµ′

∑
r,r′

τ̂ r,µi Dij
rµ,r′µ′ τ̂

r′,µ′

j , (11)

where operator τ̂ r,µi is the µ component of the tensor with
orbital rank r. In the e1

g configuration it is convenient to
define the orbital pseudo-spin states as

|↗ 〉 = |3z2−r2〉, |↘ 〉 = |x2−y2〉. (12)

An atomic state with a single electron (n=1) is then given
by |m,σ〉 = c†m,σ|0〉, where m = |↗ 〉, |↘ 〉 is the orbital
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r µ r′ µ′ Dij
rµ,r′µ′ × U/2

e1g e3g

0 s 0 s −V0 −V0 (t23z2−r2,3z2−r2+t2x2−y2,x2−y2 + t23z2−r2,x2−y2+t2x2−y2,3z2−r2)

0 s 1 z −V1 +V1 (t23z2−r2,3z2−r2−t
2
x2−y2,x2−y2 + t2x2−y2,3z2−r2−t

2
3z2−r2,x2−y2)

0 s 1 x −V1 +V1 2(t3z2−r2,3z2−r2t3z2−r2,x2−y2+tx2−y2,x2−y2tx2−y2,3z2−r2)

1 z 1 z +V2 +V2 (t23z2−r2,3z2−r2+t2x2−y2,x2−y2 − t
2
3z2−r2,x2−y2−t

2
x2−y2,3z2−r2)

1 x 1 x +V2 +V2 2(t3z2−r2,3z2−r2tx2−y2,x2−y2 + t3z2−r2,x2−y2tx2−y2,3z2−r2)

1 z 1 x +V2 +V2 2(t3z2−r2,3z2−r2t3z2−r2,x2−y2−tx2−y2,x2−y2tx2−y2,3z2−r2)

1 y 1 y +V3 +V3 2(t3z2−r2,3z2−r2tx2−y2,x2−y2 − t3z2−r2,x2−y2tx2−y2,3z2−r2)

q=0 V0 = v1+2v2
2

=
f1+2f−1+3f−3

4
, V1 = v1

2
=

f1+f−1

4
,

V2 = 2v2−v1
2

=
3f−3−f1

4
, V3 = v0+v3

2
=

3f−3−2f−1+f1
4

q=1 Ṽ0 = − f1+2f−1−f−3

4
Ṽ1 = −V1, Ṽ2 =

f1+f−3

4
, Ṽ3 =

f−3+2f−1−f1
4

TABLE I. Key tensor elements for the e1g and e3g configuration and spin ranks q=0 and q=1. The elements for the e3g configuration
are obtained setting a minus in front of all linear terms, i.e., those for which r=0, r′ 6= 0 or r′ = 0, r 6= 0. The matrix elements for
imaginary tensors have to be multiplied by i (linear terms, involving a single operator) or i× i (for products of two operators).
The prefactors are obtained from the weights: v0 = 1

2
(f1−f−1), v1 = 1

2
(f1 +f−1), v2 = 1

4
(3f−3 + f−1) and v3 = 1

2
(3f−3−f−1).

The rest of the matrix elements are given by symmetry: Dij
r′µ′,rµ = sµsµ′D

ji
rµ,r′µ′ , where sµ = 1 is for real operators and

sµ = −1 for imaginary ones. Since the model is rotationally invariant for spins, q=1, ν=x, y elements are identical. They can
be obtained from the table for q=0, replacing V0 −→ Ṽ0, V1 −→ Ṽ1,V2 −→ Ṽ2, and V3 −→ Ṽ3. All hopping integrals are defined
as ti,jm,m′ and are assumed to be real, as typically is the case in the absence of spin-orbit interaction.

and σ the spin component. We normalize the tensors
such that

∑
mσ

〈0|cimσ
(
τ̂ r,µi

)2
c†imσ|0〉 = 1. (13)

This leads to the expressions

τ̂0,s
i =

1

2

∑
mσ

n̂i,mσ (14)

τ̂1,µ
i =

1

2

∑
mm′σ

c†i,mσσ̂
µ
m,m′c

†
im′σ (15)

where ni is the number of electrons per site while σ̂µm,m′
are the elements of the Pauli matrices. We now split the
tensor elements appearing in Eq. (11) in contributions

from excited multiplets with doubly (Bijrµ,r′µ′) and singly

(Cijrµ,r′µ′) occupied orbitals

Dij
rµ,r′µ′ = Bijrµ,r′µ′ + Cijrµ,r′µ′ . (16)

The doubly-occupied-orbital multiplets for site i, are

|0, 0〉a=
c†i,3z2−r2↑c

†
i,3z2−r2↓+c

†
i,x2−y2↑c

†
i,x2−y2↓√

2
|0〉 (17)

|0, 0〉b=
c†i,3z2−r2↑c

†
i,3z2−r2↓−c

†
i,x2−y2↑c

†
i,x2−y2↓√

2
|0〉 , (18)

and have Coulomb energies equal, respectively, U+J and
U−J . Summing up all terms of this kind we find

Bijrµ,r′µ′=−2
∑

a1b1c1d1

τ irµa1c1τ
jr′µ′

b1d1

ti,jc1,d1 t
i,j
a1,b1

U
ξBµ

+(irµ)↔(jr′µ′). (19)

The labels a1, b1, c1, d1 indicate orbital quantum num-
bers and

τ irµac =
〈a, σ|τ̂ r,µi |c, σ〉∑

mσ〈0|ci,mσ
(
τ̂ r,µi

)2
c†i,mσ|0〉

, (20)

where σ=σa=σc. Since the operator τ̂ r,µi traces over spin,
the matrix element (20) is spin-independent. Finally, the
energy denominators are collected in

ξBµ = v1δµ,0+v0(1−δµ,0), (21)
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with

v0 =
1

2
(f1−f−1), v1 =

1

2
(f1+f−1) (22)

and

fα =
1

1 + αJ/U
. (23)

Using the definition (20) to treat the operators as ma-
trices, we can rewrite the result in a compact form

Bijrµ,r′µ′=−
2

U
tr
(
tj,iτ irµti,jτ jr′µ′

)
ξBµ

+(irµ)↔(jr′µ′), (24)

where the (lower-case) trace is over orbital indices only.
The second term in Eq. (16) arises from the remaining
four excited multiplets,

|1, σ〉=c†i,3z2−r2σc
†
i,x2−y2σ |0〉 , (25)

|1, 0〉=
c†i,3z2−r2↑c

†
i,x2−y2↓+c

†
i,3z2−r2↓c

†
ix2−y2↑√

2
|0〉 , (26)

|0, 0〉=
c†i,3z2−r2↑c

†
i,x2−y2↓−c

†
i,3z2−r2↓c

†
i,x2−y2↑√

2
|0〉 , (27)

They correspond to the triplet and singlet states, which
have Coulomb energies equal to U−3J , and U−J . In
matrix form it is given by

Cijrµ,r′µ′=−
4

U

(
tr(τ irµti,jσxτ jr′µ′σxtj,i)

)
ξCµ′

+(irµ)↔ (jr′µ′) (28)

where σx is a Pauli matrix and

ξCµ = v2δµ,0−
v3

2
(1−δµ,0), (29)

with the energy denominators

v2 =
1

4
(3f−3+f−1) v3 =

1

2
(3f−3−f−1). (30)

The irreducible elements of the orbital super-exchange
tensor D̂ij are collected in Table I.

In the simple limit of a cubic perovskite, along the
quantization axis ẑ the only relevant effective hopping
integral is the ddσ hopping integral t between two 3z2−r2

orbitals. This approximation is often used for describing
the low-energy bands of LaMnO3 or KCuF3. Simplifying
further by setting J = 0 yields

Bijrµ,rµ′=−
4t2

U

∑
a1

τ irµa1a1τ
jr′µ′

a1a1 δa1,3z2−r2 δµ,0δµ′,0, (31)

Cijrµ,rµ′ =− 4t2

U

∑
a1a2

τ irµa1a1σ
x
a1,a2τ

jr′µ′

a2a2 δµ,0δµ′,0. (32)

It follows that the only non-zero terms are

Dij
1z,1z =

Γ

4
, Dij

0s,0s = −3Γ

4
, Dij

0s,1z = −Γ

4

where Γ = 4t2/U . This gives, of course, the usual Kugel-
Khomskii [1, 15] Hamiltonian

Ĥi,j
SE =

Γ

4

(
ÔizÔ

j
z − 3

n̂in̂j

4ninj
− n̂i

2ni
Ôjz − Ôiz

n̂j

2ni

)
, (33)

where Ôiz = 1
2 σ̂z is the ẑ component of the conventional

orbital pseudospin operator and ni=1. The expression
along the other directions is obtained by rotating the
quantization axes.

B. Magnetic terms, n = 1

Spin rank q = 1 tensor elements can be obtained in an
analogous way. The irreducible tensors here are

τ̂0,s;1,ν
i =

1

2

∑
mσ

c†i,mσσ̂
ν
σ,σ′ci,mσ′ (34)

τ̂1,µ;1,ν
i =

1

2

∑
mm′

∑
σσ′

c†i,mσσ̂
µ
m,m′ σ̂

ν
σ,σ′ci,m′σ′ , (35)

and are normalized as rank q=0 operators. The results
obtained are given in Tab. I. One may notice that the
only change with respect to q=0 are the (U, J)-dependent
denominators in the table, which yield the transforma-
tion V −→ Ṽ.

C. The n = 3 case

The super-exchange Hamiltonian for the e3
g configu-

ration can be obtained from the n=1 case by using the
electron-hole transformation of the atomic-limit Hamil-
tonian. The pseudo-spin states are, in this case, defined
as

|↗ 〉 = c†i,x2−y2σc
†
i,3z2−r2↑c

†
i,3z2−r2↓|0〉, (36)

|↘ 〉 = c†i,3z2−r2σ c
†
i,x2−y2↑ c

†
i,x2−y2↓|0〉 (37)

and can be viewed as hole orbitals. Going to the hole
representation, the final change in the tensor elements
amounts to an extra minus in front of terms with either
r = 0, r′ 6= 0 or r′ = 0, r 6= 0, as explained in Tab. I.

IV. THREE-BAND t2g MODEL

The family of tn2g materials includes for example ti-
tanates, vandates, ruthenates and iridates, compounds
in the n = 1, 2, 4 and 5 electronic configuration, respec-
tively. Also in the t2g case half-filled systems (n=3)
have no orbital degrees of freedom, since the Hund’s rule



5

R r µ αrµ 〈m|ôrµ|m′〉

0 0 s 1

ni
√
6
δm,m′

2 1 z 1
2

δm,m′(δm,xz−δm,yz),

2 1 x 1

2
√
2

((δm,xz+δm,yz)δm′,xy

+(δm′,xz+δm′,yz)δm,xy)

2 2 3z2−r2 1

2
√
3

δm,m′(δm,xz+δm,yz−2δm,xy),

2 2 x2−y2 1
2

(δm,xzδm′,yz+δm,yzδm′,xz),

2 2 xz 1

2
√
2

((δm,xzσ−δm,yz)δm′,xy
+(δm′,xz−δm′,yzσ)δm,xy)

1 1 y i

2
√
2

((δm,xzδm′,xy−δm,yzδm′,xy)

−(δm′,xzδm,xy−δm′,yzδm,xy)),

1 2 yz i

2
√
2

((δm,xzδm′,xy+δm,yzδm′,xy)

−(δm′,xzδm,xy+δm′,yzδm,xy))

1 2 xy i
2

(δm,xzδm′,yz−δm,yzδm′,xz).

TABLE II. Prefactors for the irreducible tensors with q=0,
tn2g case. The small r denotes the orbital quantum number.
The rank for second-order classical tensors is R; it splits the
original reducible tensor of dimension 9 into a scalar, a five
component symmetric and traceless tensor, and a three com-
ponent asymmetric tensor.

ground multiplet is the S=3/2 state, and therefore are or-
bitally trivial. For n=2 and n=4 the ground multiplet is
usually the high-spin state S=1 with orbital degeneracy
three. The orbital degeneracy is three also for the n=1
and n=5 atomic ground states. In all cases the maximum
orbital rank is thus r=2. The starting Hubbard model is
the t2g three-band Hubbard Hamiltonian. The latter has
the same form given in Eqs. (9) and (10) except that the
orbital index m takes now the values xz, xy, yz and the
screened Coulomb integrals U and J in Eq. (10) differ
in value from those for the eg orbitals. This is discussed
in detail in Ref. [13], where the integrals in each case
are derived starting from atomic functions. The effective
hopping integrals in this case are typically the ddπ terms
between Wannier functions into which oxygen p states
or other high-energy states have been downfolded. As
in the eg case, we calculate first the paramagnetic (q=0)
and then the magnetic (q=1) terms of the super-exchange
Hamiltonian.

A. Paramagnetic terms, n = 1, 2

We define the q=0 tensorial operators as follows

τ̂ r,µi = αrµ
∑
mm′

∑
σ

c†i,mσ〈m|ô
r
µ|m′〉ci,m′σ.

The matrix elements 〈m|ôrµ|m′〉 and prefactors αrµ are
listed in Tab. II. In analogy with the eg case, we normal-
ize the tensors such that∑

mσ

〈0|cimσ
(
τ̂ r,µi

)2
c†imσ|0〉 = 1. (38)

For n=1 the formula for q=0 can already be found in
Ref. 14; the tensors elements are reported in Tab. III
and Tab. IV with the notation adopted in the present
manuscript.

Here we thus present the derivation for the more com-
plicated n=2 case, with total spin S=1. We define the
orbital pseudo-spin states as |m3〉 = |m1m2〉 where m1

and m2 are the occupied orbitals and m3 the empty one.
The n=2 triplet states can then be written as |m3, σ3〉,
with

|−1, σ3〉 = c†i,xyσc
†
i,yzσ|0〉δσ3,2σ+

1√
2

(c†i,xy↑c
†
i,yz↓+c

†
i,xy↓c

†
i,yz↑)|0〉δσ3,0 (39)

| 0, σ3〉 = c†i,yzσc
†
i,xzσ|0〉δσ3,2σ+

1√
2

(c†i,yz↑c
†
i,xz↓ + c†i,yz↓c

†
i,xz↑)|0〉δσ3,0 (40)

|+1, σ3〉 = c†i xzσc
†
i xyσ|0〉δσ3,2σ+

1√
2

(c†i xz↑c
†
xy↓ + c†i xz↓c

†
i xy↑)|0〉δσ3,0, (41)

where σ3 is the spin component of orbital state |m3〉. In
this basis the norm of the irreducible tensor operators is∑

m3,σ3

〈m3, σ3|
(
τ̂ r,µi

)2|m3, σ3〉 =
2S+1

2
. (42)

We now proceed to calculate the first term in Eq. (16),
the one arising from 3-electron states with a doubly-
occupied orbital. These can be split into the three S=1/2
states∣∣∣∣12 , σ2 ,m

〉
a

=
1√
2

(
c†i,m′↑c

†
i,m′↓+c

†
i,m′′↑c

†
i,m′′↓

)
c†i,mσ|0〉

(43)

with Coulomb energy 3U−4J and the additional three
S = 1/2 states∣∣∣∣12 , σ2 ,m

〉
b

=
1√
2

(
c†i,m′↑c

†
i,m′↓−c

†
i,m′′↑c

†
i,m′′↓

)
c†i,mσ|0〉,

(44)

with Coulomb energy 3U−6J . It is convenient to intro-
duce the shortcuts

τ irµa3c3 =
〈a3, σ3|τ̂ rµi |c3, σ3〉

Tr(τ̂ rµi )2

2S + 1

2
, (45)

and

v0 =
1

2
(f2−f0), v1 =

1

2
(f2+f0). (46)
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r µ r′ µ′ Dij
rµ,r′µ′ × U/2

t12g t22g

0 s 0 s −W0 −V0 (t2xz,xz+t
2
yz,yz+t

2
xy,xy)

0 s 1 z −W1 −V1
√
2√
3

(t2xz,xz−t2yz,yz)

0 s 2 z2 −W1 −V1
√
2

3
(t2xz,xz+t

2
yz,yz−2t2xy,xy)

1 z 1 z +W2 +V2 (t2xz,xz+t
2
yz,yz)

1 z 2 z2 +W2 +V2 1√
3

(t2xz,xz−t2yz,yz)

2 z2 2 z2 +W2 +V2 1
3

(t2xz,xz+t
2
yz,yz+4t2xy,xy)

1 x 1 x +W2 +V2 (txz,xz+tyz,yz)txy,xy

2 xz 2 xz +W2 +V2 (txz,xz+tyz,yz)txy,xy

1 x 2 xz +W2 +V2 (txz,xz−tyz,yz)txy,xy

2 x2−y2 2 x2−y2 +W2 +V2 2txz,xztyz,yz

1 y 1 y +W3 +V3 (txz,xz+tyz,yz)txy,xy

2 yz 2 yz +W3 +V3 (txz,xz+tyz,yz)txy,xy

2 xy 2 xy +W3 +V3 2txz,xztyz,yz

1 y 2 yz +W3 +V3 (txz,xz−tyz,yz)txy,xy

W0 = f−3 + 5
9
f−1 + 1

9
f2 = w1+4w2

3
, V0 = 8

9
f−3 + 10

9
f0 + 2

3
f2 = 4(v1+v2)

3
,

W1 = 3
8
f−3 + 11

24
f−1 + 1

6
f2 = w1+w2

2
V1 = − 1

3
f−3 + 1

3
f0 + 1

2
f2 = 2v1−v2

2
,

W2 = 3
4
f−3 − 1

12
f−1 − 1

6
f2 = 2w2−w1

2
, V2 = 2

3
f−3 + 1

12
f0 − 1

4
f2 = 2v2−v1

2
,

W3 = 3
4
f−3 − 5

12
f−1 + 1

6
f2 = w0+w3

2
V3 = 2

3
f−3 − 5

12
f0 + 1

4
f2 = v0+v3

2

W̃0 = 1
3
f−3 − 5

9
f−1 − 1

9
f2, Ṽ0 = 4

9
f−3 − 10

9
f0 − 2

3
f2,

W̃1 = 1
8
f−3 − 11

24
f−1 − 1

6
f2 Ṽ1 = − 1

6
f−3 − 1

3
f0 − 1

2
f2,

W̃2 = 1
4
f−3 + 1

12
f−1 + 1

6
f2, Ṽ2 = 1

3
f−3 − 1

12
f0 + 1

4
f2,

W̃3 = 1
4
f−3 + 5

12
f−1 − 1

6
f2 Ṽ3 = 1

3
f−3 + 5

12
f0 − 1

4
f2

TABLE III. Non-zero tensor elements (spin rank q=0) for diagonal hopping integrals, t22g and t12g configuration. The matrix
elements for imaginary tensors have to be multiplied by i (linear terms, involving a single operator) or i × i (for products
of two operators). For the t22g configuration, v0= 1

2
(f2−f0) and v1= 1

2
(f2+f0), v2= 1

3
(2f−3+f0) and v3= 1

3
(4f−3−f0). For the

t12g configuration, w0= 1
3
(f2−f−1), w1= 1

3
(f2+2f−1), w2= 1

4
(3f−3+f−1) and w3= 1

2
(3f−3−f−1)). The rest of the matrix can be

obtained by symmetry: Dij
r′µ′,rµ = sµsµ′D

ji
rµ,r′µ′ , where sµ=1 is for real operators and sµ= −1 for imaginary ones. The tensors

for spin rank q=1 can be obtained by replacing Wi −→ W̃i and Vi −→ Ṽi. The couplings Wi or Vi are identical for tensors
with the same R value. All hopping integrals are defined as ti,jm,m′ and are real.

The matrix element τ irµa3c3 does not depend on the spin,
since the operator traces over the spins; it is also the same

for site i and j, but we leave the site index for clarity.
We thus obtain
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r µ r′ µ′ Dij
rµ,r′µ′ × U/2

t12g t22g

0 s 0 s −W0 −V0 (t2xz,xy + t2xz,yz + t2xy,xz + t2xy,yz + t2yz,xz + t2yz,xy)

0 s 1 x −W1 −V1 2√
3

((txz,xz+txz,yz)txz,xy + (tyz,xz+tyz,yz)tyz,xy + (txy,xz+txy,yz)txy,xy)

0 s 1 z −W1 −V1
√
2√
3

(t2yz,xz+t
2
xy,xz−t2xz,yz−t2xy,yz)

0 s 2 xz −W1 −V1 2√
3

((txz,xz−txz,yz)txz,xy + (tyz,xz−tyz,yz)tyz,xy + (txy,xz−txy,yz)txy,xy)

0 s 2 x2−y2 −W1 −V1 2
√
2√
3

(txz,xztxz,yz+tyz,xztyz,yz+txy,xztxy,yz)

0 s 2 z2 −W1 −V1
√
2

3
(t2yz,xz+t

2
xy,xz+t

2
xz,yz+t

2
xy,yz−2t2xz,xy−2t2yz,xy)

1 z 1 z −W2 −V2 (t2xz,yz+t
2
yz,xz)

1 z 2 z2 +W2 +V2 1√
3

(t2xz,yz−t2yz,xz − 2(t2xz,xy−t2yz,xy))

2 z2 2 z2 +W2 +V2 1
3

(t2xz,yz + t2yz,xz − 2(t2xz,xy+t2xy,xz+t
2
yz,xy+t2xy,yz))

1 z 1 x +W2 +V2
√

2 ((txz,xz+txz,yz)txz,xy − (tyz,xz+tyz,yz)tyz,xy)

1 z 2 xz +W2 +V2
√

2 ((txz,xz−txz,yz)txz,xy − (tyz,xz−tyz,yz)tyz,xy)

1 z 2 x2−y2 +W2 +V2 2(txz,xztxz,yz − tyz,xztyz,yz)

2 z2 1 x +W2 +V2
√
2√
3

((txz,xz+txz,yz)txz,xy + (tyz,xz+tyz,yz)tyz,xy − 2(txy,xz+txy,yz)txy,xy)

2 z2 2 xz +W2 +V2
√
2√
3

((txz,xz−txz,yz)txz,xy + (tyz,xz−tyz,yz)tyz,xy − 2(txy,xz−txy,yz)txy,xy)

2 z2 2 x2−y2 +W2 +V2 2√
3

(txz,xztxz,yz + tyz,xztyz,yz−2txy,xztxy,yz)

1 x 1 x +W2 +V2 ((txz,yz+tyz,xz)txy,xy + (txz,xy+tyz,xy)(txy,xz+txy,yz))

1 x 2 xz +W2 +V2 ((−txz,yz+tyz,xz)txy,xy + (txz,xy+tyz,xy)(txy,xz−txy,yz))

2 xz 2 xz −W2 −V2 ((txz,yz+tyz,xz)txy,xy − (txz,xy−tyz,xy)(txy,xz−txy,yz))

2 x2 − y2 2 x2−y2 +W2 +V2 2txz,yztyz,xz

1 x 2 x2−y2 +W2 +V2
√

2 ((txz,xz+tyz,xz)txy,yz + (txz,yz+tyz,yz)txy,xz)

2 xz 2 x2−y2 +W2 +V2
√

2 ((txz,xz−tyz,xz)txy,yz + (txz,yz−tyz,yz)txy,xz)

TABLE IV. Additional relevant quadratic (r 6= 0, r′ 6= 0) and linear terms (r=0, r′ 6= 0) for t12g and t22g configuration, spin rank

q=0. The tensors for spin rank q=1 can be obtained by replacing Wi −→ W̃i and Vi −→ Ṽi. Prefactors and hopping integrals
are defined in the caption of Tab. III.

Bijrµ,r′µ′ = − 2

U

(
(1− δµδµ′)tr(tj,iτ irµti,jτ jr′µ′) + tr(ti,jtj,i)tr(τ irµ)tr(τ jr

′µ′)

− tr(tj,iτ irµti,j)tr(τ jr
′µ′)− tr(τ irµ)tr(ti,jτ jr′µ′tj,i)

)
ξBµ + (irµ)↔ (jr′µ′), (47)

where ξBµ = v1δµ,0 + v0(1 − δµ,0). The second term in
Eq. (16) arises from 3-electron states with one electron

per orbital. These are the S = 3/2 quartet∣∣∣∣32 , 3σ

2

〉
= c†i,xzσc

†
i,yzσc

†
i,xyσ|0〉 (48)∣∣∣∣32 , σ2

〉
=

1√
3

(
c†i,xzσc

†
i,yzσ̄c

†
i,xyσ|0〉+c

†
i,xzσ̄c

†
i,yzσc

†
i,xyσ|0〉

+c†i,xzσc
†
i,yzσc

†
i,xyσ̄|0〉

)
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with energy 3U−9J and the two doublets∣∣∣∣12 , σ2
〉
a

=
1√
6

(
c†i,xzσc

†
i,yzσ̄c

†
i,xyσ|0〉+c

†
i,xzσ̄c

†
i,yzσc

†
i,xyσ|0〉

−2c†i,xzσc
†
i,yzσc

†
i,xyσ̄|0〉

)
∣∣∣∣12 , σ2

〉
b

=
1√
2

(
c†i,xzσc

†
i,yzσ̄−c

†
i,xzσ̄c

†
i,yzσ

)
c†i,xyσ|0〉 (49)

with energy 3U − 6J ; here σ̄ = −σ. Collecting all con-
tributions we arrive at the final result

Cijrµ,r′µ′ =− 4

U

(
tr((tr(τ rµ)− τ rµ)(ti,jτ r

′µ′tj,i))
)
γµ′

+(irµ)↔ (jr′µ′) (50)

where γµ = v2δµ,0 + v3
2 (1−δµ,0) with

v2 =
1

3
(2f−3+f0), v3 =

1

3
(4f−3−f0). (51)

The elements of the total super-exchange tensor are listed
in Tables III and IV.

Let us consider now the simple limit of cubic per-
ovskites, and the approximation in which the only effec-
tive hopping integrals along a crystal axes direction are
the ddπ intra-orbital ones. This approximation is often
adopted for the description of t2g perovskites in simple
models. If we define ẑ as the quantization axis, these are
txz,xz = tyz,yz = t. Setting in addition J = 0, we obtain
the Hamiltonian

Hi,j
SE

Γ
=− 8δn,2+5δn,1

3
τ̂0,s
i τ̂0,s

j +
1

6
τ̂2,3z2−r2
i τ̂2,3z2−r2

j

+
1

2
τ̂1,z
i τ̂1,z

j +
1

2
τ̂2,x2−y2
i τ̂2,x2−y2

j +
1

2
τ̂xyi τ̂xyj

− δn,2+2δn,1

3
√

2

(
τ̂2,3z2−r2
i τ̂0s

j +τ̂0s
i τ̂

2,3z2−r2
j

)
(52)

The first term, proportional to the product of two r=0
operators, does not contribute in determining the ground
state; it just gives an energy shift. With the constraint
nxy = n−nxz−nyz, for a bond along ẑ, the Hamiltonian
reduces to the expected [2, 3] limit

Hi,j=i+ẑ
SE

Γ
=− 1

4
(n̂ixz + n̂iyz + n̂jxz + n̂jyz)

+
1

4

(
n̂ixzn̂

j
xz + n̂iyzn̂

j
yz

)
(53)

+
1

4

(
c†i,xzci,yzc

†
j,yzcj,xz + c†i,yzci,xzc

†
j,xzcj,yz

)
.

This Hamiltonian is often adopted for studying spin-
orbital physics in titanates and vanadates. In this simpli-
fied case only two orbitals play a role for a given bond,
while in the full super-exchange Hamiltonian all three
orbitals are active.

B. Magnetic case, n = 1, 2.

The operators of spin rank q=1 are defined as

τ̂ r,µ;1ν
i =αrµ

∑
mm′

∑
σσ′ c

†
i,mσ〈m|ôrµ|m′〉σ̂νσ,σ′ci,m′σ′ ,

with the same αrµ introduced for rank q=0, so that∑
mσ

〈0|ci,mσ
(
τ̂ r,µ;1,ν
i

)2
c†i,mσ|0〉 = 1, (54)

and in addition∑
m3σ3

〈m3, σ3|
(
τ̂ r,µ;1,ν
i

)2|m3, σ3〉 = 1. (55)

In calculating the norm above, since we restricted the
lower-energy space to the S=1 multiplet, S=0 interme-
diate states are discarded. The resulting tensor elements
can be found in Tables III and IV for the t12g and t22g
case. As in the eg case, the Coulomb denominators are
modified when the spin rank changes from zero to one,
leading to the transformation V −→ Ṽ for n = 2 and
W −→ W̃ for n = 1, as explained in Tab. III.

C. The n = 4 and n = 5 case

For n=5 and n=4 electron-hole transformation of the
atomic states yields the corresponding changes. To ob-
tain the same prefactors (aside from a sign) for spin
operators with rank zero one has to then also replace
ni −→ 6−ni, yielding the number of holes, in the defini-
tion. As in the eg case, in the hole representation the only
modification with respect to the analogous electron case
is the change of sign in the terms which mix operators
with orbital rank zero and higher.

V. ENERGY SURFACES

It is now easy to use the super-exchange Hamiltoni-
ans to calculate energy surfaces in the static mean field
approximation. We use as example the case of t12g per-
ovskites in the GdFeO3-type structure, for which we
performed extensive many-body calculations based on
dynamical mean-field theory [14]. For the calculations
we use hopping integrals for t2g Wannier functions, ob-
tained ab-initio via the linearized augmented plane-waves
method, as implemented in the WIEN2K code [18]. We
define the occupied orbital at a Ti site as

|θ, φ〉 =− |π−θ, φ± π〉 (56)

= sin θ cosφ|xz〉+ cos θ|xy〉+ sin θ sinφ|yz〉.

The most occupied orbitals for equivalent Ti sites in the
unit cell are related via space-group symmetries; in the
GdFeO3-type structure, with four atoms per unit cell,
if at site Ti1 the most occupied orbital is |θ, φ〉1, the
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FIG. 1. Total super-exchange energy gain for YTiO3 (top panel), LaTiO3 (middle panel) and an hypothetical cubic perovskite
with only ddπ hopping integrals (bottom panel). The different lines correspond to φ values between 0 and π. The orange line is
the φ yielding the absolute minimum. Hopping integrals obtained ab-initio, downfolding oxygen and other high-energy states.
PM: paramagnetic. AFM: antiferromagnetic. FM: ferromagnetic.

corresponding state at sites 2, 3 and 4, where site 3 is
on top of site 1 and site 4 on top of 2, are given by,
respectively, |θ, φ〉2 = |θ, π2 − φ〉1, |θ, φ〉3 = | − θ, φ〉1 and
|θ, φ〉4 = | − θ, π2 − φ〉1. Thus the super-exchange energy

gain for orbital ordering in the paramagnetic phase is

∆E(θ, φ) =

>∑
rµ,r′µ′

(
8D

ab

rµ,r′µ′τ
r′µ′

2 τ rµ1 +4D
c

rµ,r′µ′τ
r′µ′

3 τ rµ1

)
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where τ rµi = i〈θ, φ|τ̂ r,µ|θ, φ〉i and the sum is for r+r′>0.
Furthermore

D
ab

rµ,r′µ′ =
1

8

∑
i=j,j+ẑ

(Dii+x̂
rµ,r′µ′+D

ii−x̂
rµ,r′µ′+D

ii+ŷ
rµ,r′µ′+D

ii−ŷ
rµ,r′µ′),

D
c

rµ,r′µ′ =
1

4

∑
i=j,j+x̂

(Dii+ẑ
rµ,r′µ′+D

ii−ẑ
rµ,r′µ′).

Analogous expressions can be written for the ferromag-
netic and antiferromagnetic phases. In Fig. 1 we show
the resulting energy surfaces as a function of θ and φ,
in the paramagnetic, antiferromagnetic, and ferromag-
netic case, using the same hopping parameters entering
in Ref. [14] dynamical mean-field theory (DMFT) calcu-
lations. Paramagnetic DMFT results show that orbital
ordering occurs at angles determined by the crystal-field
splitting [14]. For LaTiO3 these angles are θCF ∼ 52◦

and φCF ∼ 54◦ and while for YTiO3 we found θCF ∼ 55◦

and φCF ∼ 97◦. They differ from those that minimize
the energy in Fig. 1, as can be seen from the left panels,
because in the figure only super-exchange interactions
are considered. Fig. 1 explains, however, why the ground
state of YTiO3 is ferromagnetic and that of LaTiO3 ferro-
magnetic. In the case of YTiO3, the angles θCF, φCF are
close to those yielding the super-exchange minimum for
ferromagnetism (right top panel, orange line). For the
orbital |θCF, φCF〉, the energy gains for ferromagnetism
is thus smaller than the energy gain for antiferromag-
netism. For LaTiO3, instead, at the angles φCF, θCF fer-
romagnetism is strongly suppressed, since the associated
energy gain is basically zero, while the energy gain for an-

tiferromagnetism remains small but finite. This is in line
with our previous conclusions based on extensive DMFT
studies [10, 16, 17]. This behavior is hard to understand
in term of a simple cubic model (bottom row of the fig-
ure), for which paramagnetic, ferromagnetic and antifer-
romagnetic structures have minima at the same angles.

VI. CONCLUSION

We have shown how general super-exchange Hamilto-
nians for correlated materials can be obtained, exploiting
the properties of irreducible tensors. We give the analyt-
ical formulas for the eng and tn2g cases and provide ready-
to-use tables with the final results. The representation of
the super-exchange interaction presented can be obtained
numerically for materials in a straight-forward way. Ex-
act diagonalization provides the atomic states for realistic
Coulomb tensors. This allows us to calculate the super-
exchange Hamiltonian by projection, calculating simple
traces, for hopping integrals from ab-initio Wannier func-
tions, and without approximations on the Coulomb ten-
sor. Using these Hamiltonians it is possible to calculate,
in mean-field theory, energy surfaces comparing differ-
ent types of orbital ordering, and determine the energy
gain resulting from such ordering, i.e., the stability of the
ordered phase.
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