000910612 001__ 910612
000910612 005__ 20240625095031.0
000910612 0247_ $$2doi$$a10.1103/PhysRevB.106.115110
000910612 0247_ $$2ISSN$$a1098-0121
000910612 0247_ $$2ISSN$$a2469-9977
000910612 0247_ $$2ISSN$$a0163-1829
000910612 0247_ $$2ISSN$$a0556-2805
000910612 0247_ $$2ISSN$$a1095-3795
000910612 0247_ $$2ISSN$$a1538-4489
000910612 0247_ $$2ISSN$$a1550-235X
000910612 0247_ $$2ISSN$$a2469-9950
000910612 0247_ $$2ISSN$$a2469-9969
000910612 0247_ $$2Handle$$a2128/32263
000910612 0247_ $$2WOS$$aWOS:000859707800004
000910612 037__ $$aFZJ-2022-03990
000910612 082__ $$a530
000910612 1001_ $$0P:(DE-Juel1)176544$$aZhang, Xue-Jing$$b0$$ufzj
000910612 245__ $$aLaVO_3 : A true Kugel-Khomskii system
000910612 260__ $$aWoodbury, NY$$bInst.$$c2022
000910612 3367_ $$2DRIVER$$aarticle
000910612 3367_ $$2DataCite$$aOutput Types/Journal article
000910612 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1667382639_31190
000910612 3367_ $$2BibTeX$$aARTICLE
000910612 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910612 3367_ $$00$$2EndNote$$aJournal Article
000910612 500__ $$aISSN 2469-9969 not unique: **2 hits**.
000910612 520__ $$aWe show that the t^2_2g perovskite LaVO_3, in its orthorhombic phase, is a rare case of a system hosting an orbital-ordering Kugel’-Khomskii phase transition rather than being controlled by the Coulomb-enhanced crystal-field splitting. We find that, as a consequence of this, the magnetic transition is close to (and even above) the superexchange driven orbital-ordering transition, whereas typically magnetism arises at much lower temperatures than orbital ordering. Our results support the experimental scenario of orbital ordering and G-type spin correlations just above the monoclinic-to-orthorhombic structural change. To explore the effects of crystal-field splitting and filling, we compare to YVO_3 and t^1_2g titanates. In all these materials the crystal field is sufficiently large to suppress the Kugel’-Khomskii phase transition.
000910612 536__ $$0G:(DE-HGF)POF4-5215$$a5215 - Towards Quantum and Neuromorphic Computing Functionalities (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000910612 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x1
000910612 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910612 7001_ $$0P:(DE-Juel1)130763$$aKoch, Erik$$b1$$ufzj
000910612 7001_ $$0P:(DE-Juel1)130881$$aPavarini, Eva$$b2$$eCorresponding author
000910612 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.106.115110$$gVol. 106, no. 11, p. 115110$$n11$$p115110$$tPhysical review / B$$v106$$x1098-0121$$y2022
000910612 8564_ $$uhttps://juser.fz-juelich.de/record/910612/files/paper.pdf$$yOpenAccess
000910612 8564_ $$uhttps://juser.fz-juelich.de/record/910612/files/PhysRevB.106.115110.pdf$$yOpenAccess
000910612 909CO $$ooai:juser.fz-juelich.de:910612$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000910612 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176544$$aForschungszentrum Jülich$$b0$$kFZJ
000910612 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130763$$aForschungszentrum Jülich$$b1$$kFZJ
000910612 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130881$$aForschungszentrum Jülich$$b2$$kFZJ
000910612 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5215$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000910612 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x1
000910612 9141_ $$y2022
000910612 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000910612 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-05-04
000910612 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000910612 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000910612 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910612 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000910612 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000910612 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000910612 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000910612 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11
000910612 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-11
000910612 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-11
000910612 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2021$$d2022-11-11
000910612 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-11
000910612 920__ $$lyes
000910612 9201_ $$0I:(DE-Juel1)IAS-3-20090406$$kIAS-3$$lTheoretische Nanoelektronik$$x0
000910612 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000910612 9801_ $$aFullTexts
000910612 980__ $$ajournal
000910612 980__ $$aVDB
000910612 980__ $$aUNRESTRICTED
000910612 980__ $$aI:(DE-Juel1)IAS-3-20090406
000910612 980__ $$aI:(DE-Juel1)JSC-20090406
000910612 981__ $$aI:(DE-Juel1)PGI-2-20110106