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We show that the t2
2g perovskite LaVO3, in its orthorhombic phase, is a rare case of a system hosting

an orbital-ordering Kugel’-Khomskii phase transition rather than being controlled by the Coulomb-enhanced
crystal-field splitting. We find that, as a consequence of this, the magnetic transition is close to (and even
above) the superexchange driven orbital-ordering transition, whereas typically magnetism arises at much lower
temperatures than orbital ordering. Our results support the experimental scenario of orbital ordering and G-
type spin correlations just above the monoclinic-to-orthorhombic structural change. To explore the effects of
crystal-field splitting and filling, we compare to YVO3 and t1

2g titanates. In all these materials the crystal field is
sufficiently large to suppress the Kugel’-Khomskii phase transition.
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I. INTRODUCTION

Almost 50 years ago, Kugel’ and Khomskii (KK) showed
in a classic paper that, in strongly correlated materials, orbital
ordering (OO) can arise from pure superexchange (SE) inter-
actions [1]. It can, however, also result from the crystal-field
(CF) splitting via a lattice distortion, i.e., from electron-lattice
coupling [2]. In typical cases both mechanisms lead to similar
types of ordering so that identifying which one actually drives
the transition is a “chicken-and-egg problem” [3]. Despite
the intensive search, it has, therefore, been hard to find an
undisputed realization of a KK system.

Initially it was believed that the eg perovskites KCuF3

and LaMnO3 could be KK materials [3–6]. In recent years,
however, it was proven that neither in these, nor in other
eg systems, superexchange interactions are strong enough to
drive the OO transition alone [7–12]. In fact, in order to
explain the presence of OO at high temperature, lattice dis-
tortions, arising from the Jahn-Teller effect, the Born-Meyer
potential, or both [13], have to be present. The CF splitting
generated by the distortions is then effectively enhanced by
the Coulomb repulsion, which suppresses orbital fluctuations
[14–16], leading to a very robust OO state. The actual form of
the ordered state is then essentially determined by the crystal
field. Recently, the case of t1

2g perovskites was explored as
possible alternative [17]. In fact, the CF is typically weaker
in π -bond than in σ -bond materials, whereas, at the same
time, the orbital degeneracy is larger. This can potentially
turn the balance of interactions in favor of SE. It was indeed
shown that TKK, the critical temperature of super-exchange-
driven orbital ordering, is remarkably large in LaTiO3 and
YTiO3, about 300 K [17]. At the same time it became,
however, also clear that even in these systems OO is domi-
nated by correlation-enhanced CF splitting rather than the SE
interaction.

In this paper we identify the first compound in which
KK multiorbital superexchange yields an orbital-ordering
phase transition at observable temperatures: the t2

2g perovskite
LaVO3 in its orthorhombic (GdFeO3-type structure) phase.
LaVO3 has drawn a lot of attention due to its peculiar prop-
erties and phase diagram [18–24]. In the low-temperature
monoclinic phase (T < Tstr ∼ 140 K), it exhibits a C-type
magnetic structure. Due to the small distortions of the VO6

octahedra, it was suggested that C-type spin order could
arise from strong xz/yz orbital fluctuations [25]. Calculations
accounting for the GdFeO3-type distortions have, however,
shown that orbital fluctuations are suppressed below Tstr , and
classical OO is sufficient to explain C-type spin order [16].
The debate remains open for what concerns the intriguing
phase just above the structural phase-transition, Tstr < T <

TN′ ∼ 145 K. Here thermodynamic anomalies and weak mag-
netic peaks suggest a change in spin-orbital order, either long
or short ranged [22–24], the origin of which is, however, un-
clear. Our results show that the KK nature of LaVO3 provides
a natural explanation.

To understand what makes orthorhombic LaVO3 special,
we compare it with the similar but more distorted YVO3 and
the two isostructural t1

2g titanates. We start from the param-
agnetic (PM) phase. We show that, for the vanadates, TKK is
actually smaller than for titanates, TKK ∼ 190 K in LaVO3 and
TKK ∼ 150 K in YVO3, but at the same time the crystal field
is weaker, for LaVO3 more so than for YVO3. The surprising
result of the energy-scale balance is that, while in YVO3 the
occupied state is still, to a large extent, determined by the
CF splitting, for LaVO3 it substantially differs from CF-based
predictions (Fig. 1). Staying with LaVO3, we find that the
actual orbital-ordering temperature TOO is close to TKK. Even
more remarkable is the outcome of magnetic calculations.
They yield a G-type antiferromagnetic (AF) phase with TN >

TOO ∼ TKK > Tstr . This is opposite to what typically happens
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FIG. 1. Left: LDA, highest-energy CF state |θ, φ〉CF. Center and
right: dynamical-mean-field theory (DMFT) hole orbital at 90 K.
|θ, φ〉OO: experimental structure. |θ, φ〉KK: idealized case with no CF
splitting. Top line: YVO3. Bottom line: LaVO3.

in orbitally ordered materials in which TN is smaller than TOO,
often sizably so. Our results provide a microscopic explana-
tion of the spin-orbital correlations found right above Tstr in
experiments [22–24].

II. ORBITAL-ORDERING TRANSITION

In order to determine the onset of the super-exchange-
driven orbital-ordering transition TKK, we adopt the approach
pioneered in Refs. [7,8]. It consists in progressively re-
ducing the static CF splitting to single out the effects
of pure superexchange from those of Coulomb-enhanced
structural distortions. Calculations are performed using the
local-density approximation plus dynamical-mean-field the-
ory method (LDA+DMFT) [26] for the materials-specific t2g

Hubbard model,

Ĥ = −
∑

ii′σ

∑

mm′
t i,i′
mm′c

†
imσ ci′m′σ + U

∑

im

n̂im↑n̂im↓

+1

2

∑

iσσ ′

∑

m �=m′
(U−2J−Jδσ,σ ′ )n̂imσ n̂im′σ ′

−J
∑

im �=m′
(c†

im↑c†
im↓cim′↑cim′↓+c†

im↑cim↓c†
im′↓cim′↑). (1)

Here −t i,i′
mm′ (i �= i′) are the LDA hopping integrals [27] from

orbital m on site i to orbital m′ on site i′. They are ob-
tained in a localized Wannier function basis via the linearized
augmented plane-wave method [28–30]. The operator c†

imσ

(cimσ ) creates (annihilates) an electron with spin σ in Wan-
nier state m at site i, and nimσ = c†

imσ cimσ . For the screened
Coulomb parameters we use values established in previous
works [14–16,31]: U=5 eV with J=0.68 eV for YVO3 and
LaVO3 and J=0.64 eV for YTiO3 and LaTiO3. We then
solve this model using DMFT. The quantum impurity solver
is the generalized hybridization-expansion continuous-time
quantum Monte Carlo method [32] in the implementation of
Refs. [10,12,33].

FIG. 2. Lines: Orbital polarization p(T ), defined as
p(T )=(−1)n((n1+n2)/2−n3), as a function of temperature
T ; here ni is the occupation of natural orbitals with ni+1<ni

for n=2 and ni+1>ni for n=1. Bloch spheres: angles
defining the least (n=2) or most (n=1) occupied orbital,
|θ, φ〉= sin θ cos φ|xz〉+ cos θ |xy〉+ sin θ sin φ|yz〉. Empty
circles (OO): experimental structure. Filled circles (KK): Idealized
case with no CF splitting. Triangles (CF): crystal-field orbital.
Left: vanadates. Right: titanates. Equatorial line: θ=90◦. Thick-line
meridian: φ=0◦. The equivalent solution at |π−θ, φ+π〉 is on the far
side of the sphere. For LaVO3, an inset shows explicitly the sudden
variation of φ across TKK; �φ = φ−φCF is the difference with
respect to the CF value of φ.

The main results are summarized in Fig. 2. We start
from the experimental structure with full CF splitting (empty
circles). For the titanates, the orbital polarization pOO(T )
is already very large at 1000 K; instead, in the vanadates,
and LaVO3 in particular, pOO(T ) −→ 1 at much lower tem-
peratures [16]. The OO ground state, for the t2

2g case, is
characterized, at a given site, by the least occupied (or hole)
natural orbital,

|θ, φ〉 = sin θ cos φ|xz〉 + cos θ |xy〉 + sin θ sin φ|yz〉, (2)

represented via open circles on the Bloch spheres in the
figure. The hole orbitals at the neighboring sites, yielding
the spatial arrangement of orbitals, can be obtained from (2)
using symmetries [34]. For t1

2g systems, (2) represents the
most occupied orbital. As the figure shows, in the t1

2g case, at
any temperature |θ, φ〉OO is very close to |θ, φ〉CF, the lowest
energy crystal-field orbital (open triangle). Switching to t2

2g
systems, for YVO3, the hole orbital is |θ, φ〉OO ∼ |72◦,−1◦〉,
quite close to the crystal-field state with the highest-energy
|θ, φ〉CF ∼ |71◦, 9◦〉. Up to here, the results conform to the
established picture: The CF splitting, enhanced by Coulomb
repulsion, determines the shape of the ordered state [7–12].

The conclusion changes dramatically as soon as we turn
to LaVO3. Here, pOO(T ) has a sharp turn upwards at TKK ∼
TOO ∼ 190 K. Furthermore, lowering the temperature, the
hole orbital |θ, φ〉OO turns markedly away from the CF
high-energy state |θ, φ〉CF ∼ |142◦, 25◦〉, showing that the

115110-2



LAVO3: A TRUE KUGEL-KHOMSKII SYSTEM PHYSICAL REVIEW B 106, 115110 (2022)

ordering mechanism works against the crystal-field split-
ting. At the lowest temperature we could reach numerically
|θ, φ〉OO ∼ |130◦,−8◦〉. This can be seen on the Bloch sphere,
where the empty circles move away from the triangle as well
as in the inset showing the sudden variation of the most
occupied orbital across TKK.

Next we analyze the results in the zero CF splitting limit,
which yields the pure Kugel’-Khomskii transition. The results
are shown as filled circles in Fig. 2, and the orbital polarization
curve is pKK(T ). For the titanates, pKK(T ) exhibits a small
tail at high temperature and then sharply rises at TKK ∼ 300
K; at this transition pOO(T ) has, however, long saturated.
For the vanadates the rise in pKK(T ) is much sharper, and
at a markedly lower temperature, TKK ∼ 150 K in YVO3 and
TKK ∼ 190 K in LaVO3, whereas the high-temperature tail is
virtually absent. Furthermore, for LaVO3, the figure shows
that pOO(T ) ∼ pKK(T ) for temperatures sufficiently below
TKK ∼ TOO. At the same time, decreasing the temperature,
the OO hole orbital for the experimental structure (empty
circles), rapidly moves towards the KK hole (filled circles).
These results together identify LaVO3 as the best known
representation of a Kugel’-Khomskii system, i.e., a system
hosting an orbital-ordering KK-driven phase transition. The
KK superexchange interaction both determines the value of
TKK ∼ TOO and pulls the hole away from the crystal-field
orbital towards the KK orbital. YVO3 is on the borderline
but still on the side where the Coulomb-enhanced CF in-
teraction dominates; that means, the hole stays close to the
crystal-field orbital even below TOO. Furthermore, for YVO3,
the critical temperature TKK ∼ 150 K itself is smaller than the
Tstr ∼ 200 K, the temperature at which the orthorhombic-to-
monoclinic phase transition occurs. For LaVO3 the opposite
is true (TKK ∼ TOO > Tstr ).

III. SUPEREXCHANGE HAMILTONIAN
AND ENERGY SURFACES

Further support for these conclusions comes from the
analysis of superexchange energy-gain surfaces, Fig. 3. We
obtain them adopting the approach recently introduced in
Refs. [17,35], representing the multiorbital KK superex-
change Hamiltonian via its irreducible-tensor decomposition,

ĤSE = 1

2

∑

i, j

∑

μμ′

∑

r,r′
τ̂

r,μ;qν

i Di j;qν

rμ,r′μ′ τ̂
r′,μ′;qν

j δq,0δν,0. (3)

Here r = 0–2 is the orbital rank, μ is the associated com-
ponents, and the spin rank is q with components ν. The
analytic expressions of the tensor elements can be found in
Refs. [17,35]. The terms with q = q′ = 0 and r = 0, r′ �=0
(or vice versa) describe the (linear) orbital Zeeman interaction
[12]. These contributions behave as a site-dependent crystal-
field splitting since the r = q = 0 tensor operator only counts
the number of electrons on the neighboring site, here n = 2.
The r �= 0, r′ �= 0 quadratic terms are those that can actually
lead to a phase transition. Terms with q = 0 are purely param-
agnetic, those with r = 0 purely paraorbital. In Fig. 3 we show
results for the ab initio hopping integrals and, for reference,
an idealized cubic case. Comparing the results for the PM
phase with those in Fig. 2, one may see that the angles θM, φM

FIG. 3. Total superexchange energy gain for YVO3 (top panel)
and LaVO3 (second panel from the top) in the para-(PM), antiferro-
(AF), and ferromagnetic (F) case, GdFeO3-type structure. Lines:
different φ values in the (0, π ) interval, see the caption. Orange
curve: φM, yielding the minimum. Third panel from the top: cubic
case. Bottom panel: energy gain for the hopping integrals of LaVO3,
but in a hypothetical t1

2g configuration.

minimizing �E (θ, φ) yield |θ, φ〉KK, the state obtained in
LDA+DMFT calculations in the zero CF limit. The maxi-
mum quadratic SE energy gain, |�E (θM, φM )|, increases from
∼ 35 meV for YVO3 to ∼ 41 meV for LaVO3, to ∼ 46 meV
for LaTiO3 and YTiO3, explaining the progressive increase in
TKK obtained in the DMFT calculations.

Figure 4 shows the various contributions to �E (θM, φM).
The most important are the quadratic SE terms, those which
can lead to a transition. For YVO3 several channels have
comparable weight—similar to the titanates [34]. In contrast,
for LaVO3, a single term, the τ̂ 2,xz

i τ̂ 2,xz
j interaction, dominates,

as in the cubic limit; the total energy gain from quadratic SE
terms is, however, significantly larger than in the cubic limit
since small positive and negative contributions cancel out.

The linear orbital Zeeman terms [34], whereas not giving
rise to a phase transition, can generate a finite polarization
tail already for T > TKK [12], which can either assist or hin-
der the transition. For the titanates there is a sizable tail in
the pKK(T ) curves in Fig. 2; furthermore, the linear terms
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FIG. 4. Decomposition of �E (θ, φ) at the angles (θM , φM ) that
yield the absolute minimum in the paramagnetic case. Top: result
from the total �E (θ, φ). Bottom: only quadratic terms are included.
The components are specified on the horizontal axis; missing nondi-
agonal terms can be obtained via the transformation rμ ↔ r′μ′.

cooperate with the quadratic terms, favoring the occupation
of the same orbital. For the vanadates, instead, the tail is
negligible. The suppression of the orbital Zeeman effect turns
out to be due to filling rather than to the band structure:
Assuming identical hopping integrals in the two families
of compounds, Di j 00

00,rμ(n = 1)/Di j 00
00,rμ(n = 2) = W1/V1 as de-

fined in Ref. [35], Table III; the right-hand side depends only
on J/U . The prefactor W1 for the t1

2g configuration can be
sizably larger than the corresponding V1 for the t2

2g case—up
to a factor of 10 for realistic J/U values [35]. This can be seen
comparing the La d2 and d1 panels in Fig. 2.

Summarizing, in the PM phase, quadratic SE interactions
are weaker in the vanadates than in the titanates, and the
orbital Zeeman terms are negligible. LaVO3 is, however, char-
acterized by a very small CF splitting; the KK Hamiltonian
form is close to the cubic limit, but the distortions actually
increase the energy gained from ordering the orbitals. This
makes LaVO3 unique and results in low-temperature orbital
physics being controlled by superexchange interactions.

IV. ORBITAL ORDERING AND THE G-TYPE
ANTIFERROMAGNETIC PHASE

To obtain the final confirmation of the dominant role of
superexchange in LaVO3 we perform calculations allowing
for G-type antiferromagnetism. For conventional orbitally
ordered materials, where OO is driven by the Coulomb-
enhanced crystal-field, TN � TOO. In LaVO3, instead, we find
that TN and TOO are comparable. In fact, as illustrated in
Fig. 5, the magnetic ordering happens already above the or-
bital ordering transition, TN > TOO ∼ TKK. To explain this
remarkable result, we return to the SE energy surfaces in
Fig. 3, and compare the PM case, left column, to the AF case,
center column. The figure shows that the AF curves are shifted
uniformly downwards. This is due to the paraorbital (r = 0)
term with spin rank q = 1; comparing to the bottom row of
the figure, one may see that the latter is much larger in the t2

2g

FIG. 5. LaVO3, orbital and magnetic transition. Circles: orbital
polarization. Pentagons: magnetization. Empty symbols: DMFT
for experimental structure (R). Full symbols: DMFT for an ideal
structure without CF splitting (I0). Triangle: LDA. Rhombi: angles
yielding the maximum SE energy-gain (AF case), obtained from
quadratic terms (dark gray), and linear terms (light gray) only.

than in the t1
2g configuration. Furthermore, the quadratic en-

ergy gain for orbital ordering alone (obtained subtracting the
paraorbital term) decreases going from the PM to the AF case;
at the same time, the orbital Zeeman linear terms increase in
importance but favor φM ′ ∼ φM+180◦, hence, competing with
the quadratic terms. Thus, at a given finite temperature with
respect to the PM case, the OO hole orbital (orange open circle
on the sphere) remains closer to the highest-energy CF orbital
(triangle). Importantly, we obtain such a behavior only for
LaVO3; in the case of YVO3, for the experimental structure
we do not find any magnetic phase above Tstr or TKK, in line
with experiments.

V. CONCLUSION

In conclusion, we have identified orthorhombic LaVO3 as
a rare case of a system hosting a Kugel’-Khomskii orbital-
ordering transition. The relevance of SE in t2

2g vanadates
has been previously suggested based on idealized model cal-
culations [25], however, within a strong xz/yz-fluctuations
picture. In fact, we have shown that orbital fluctuations, large
at room temperature, are suppressed when approaching Tstr .
Furthermore, we have shown that SE is key only for LaVO3.
In all other cases considered, the conventional picture of
the Coulomb-enhanced CF splitting applies. This is further
confirmed by the fact that TN ∼ TOO only in orthorhombic
LaVO3. More strikingly, we find that TN > TKK ∼ TOO, op-
posite to what happens in conventional OO materials. Taking
into account that DMFT as all mean-field theories somewhat
overestimates ordering temperatures, our results provide a nat-
ural explanation for the proposed picture of orbital order and
weak G-type magnetism (or short-range spin-orbital order)
right above the structural orthorhombic-to-monoclinic transi-
tion [22–24].
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