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Analytical concentration impedance of a transport layer 
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A B S T R A C T   

A formula for concentration (zeta-) impedance of reactant transport through a finite–length layer attached to the 
electrochemical electrode is derived. The static point of the Nyquist spectrum is independent of the layer 
transport parameters, while the peak of − Iζ is located at the frequency which is close to the Warburg finite
–length frequency.   

1. Introduction 

Electrochemical impedance spectroscopy (EIS) is a unique non- 
invasive, operando tool for fuel cells testing and characterization. 
Interpretation of impedance spectra could be done using either phys
ics–based modeling (see reviews [1,2]), or distribution of relaxation 
times (DRT) [3,4]. However, physics–based modeling is a complicated 
tool, while DRT fails to separate the processes with close characteristic 
frequencies. 

To overcome this limitation, in recent years an alternative imped
ance techniques have been investigated [5–9]. Due to oxygen reduction 
reaction (ORR), current, potential and oxygen concentration in a poly
mer electrolyte membrane (PEM) fuel cell are tightly coupled and small 
perturbation of any of the three variables induces linear response of the 
other two. In particular, one may perturb the oxygen concentration δc 
and measure the respective perturbation of the cell potential δV. Below, 
the ratio ζ = δV/δc will be referred to as the concentration impedance, 
or zeta–impedance. Analysis shows that zeta–impedance is independent 
of faradaic processes in the cell [10]. This makes zeta–spectroscopy a 
viable complementary to EIS technique, especially in cases when one of 
the oxygen transport processes overlaps with the faradaic reaction on 
the frequency scale. 

A classic solution for electric impedance of a semi-infinite transport 
layer (TL) has been derived by Warburg [11]. Later, his approach has 
been applied to obtain impedance of a finite–length TL [12]. In [10], a 
model for the concentration impedance of the gas diffusion and cathode 
catalyst layers in PEM fuel cell has been developed assuming large 
stoichiometry of the air flow and large oxygen consumption in the 
catalyst layer. (See Table 1). 

From theoretical standpoint, it is of large interest to derive solution 

for zeta–impedance of a finite–length TL operating in standard condi
tions. This seems to be a simplest, refined formulation of zeta
–impedance problem. Below, we develop a model for zeta–impedance of 
the TL. The model leads to analytical formula for the zeta–impedance. 

2. Model 

To bring the model closer to experiment, suppose that the transport 
layer is located between the air channel and the cathode catalyst layer 
(CCL) in a PEM fuel cell (Fig. 1). Our goal is analytical formula for the TL 
concentration impedance. 

The model is based on the following assumptions.  

• The dominating mechanism of oxygen transport through the TL is 
diffusion  

• Oxygen and proton transport in the CCL are fast  
• The electrode operates under fixed current density 

The second assumption allows us to simplify the electrode model; 
below, it is shown that TL concentration impedance depends on the 
electrode properties, much like the corrected Warburg impedance [13]. 
The last assumption means that the electronic equipment blocks oscil
lations of the cell current density. This condition is typical for EPIS ex
periments [6–9]. 

Oxygen transport in the TL is thus described by the transient diffu
sion equation 

∂cb

∂t
− Db

∂2cb

∂x2 = 0, Db
∂cb

∂x

⃒
⃒
⃒
⃒

x=lt

=
j0

4F
, cb

(

lt + lb

)

= ch, (1)  

where cb is the oxygen concentration in the TL, t is time, x is the distance 
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through the system counted from the membrane (Fig. 1), Db is the ox
ygen diffusion coefficient, lt is the CCL thickness, lb is the TL thickness, 
and j0 is the current density in the electrode. The left boundary condition 
for Eq.(1) means that the oxygen flux in the TL obeys to stoichiometric 
requirement, and the right boundary condition fixes the channel oxygen 
concentration ch at the TL/channel interface (x = lt + lb). 

Current and overpotential in the electrode are related by the proton 
charge conservation equation (Ref.[14], page 313) 

Cdl
∂η
∂t

+
∂j
∂x

= − i*
(

c
cref

)

exp
(η

b

)
(2)  

where Cdl is the double layer capacitance, η is the positive by convention 
ORR overpotential, j is the local proton current density, i* is the ORR 
volumetric exchange current density (A cm− 3), c is the oxygen concen
tration in the electrode, cref is the reference oxygen concentration, and b 
is the ORR Tafel slope. The first term on the left side of Eq.(2) describes 

charging/discharging of the double layer capacitance, which is assumed 
to be uniformly distributed over the CCL volume. The right side of Eq.(2) 
represents the Tafel rate of proton consumption in the ORR. 

Assumption of fast proton and oxygen transport in the CCL means 
that η and c are nearly independent of x. Small variation of η along x is 
provided by large proton conductivity, so that the proton current 
j = − σp∂η/∂x remains finite. Integrating Eq.(2) over x from zero to lt, we 
get 

Cdllt
∂η0

∂t
− j0 = − i*lt

(
c1

cref

)

exp
(η0

b

)
(3)  

where η0 is the ORR overpotential at x = 0 and c1 is the oxygen con
centration at the CCL/TL interface. Note that the product Cdllt (F cm− 2) 
can be considered as a superficial double layer capacitance of the 
electrode. 

It is convenient to introduce dimensionless variables 

t̃ =
t
t*
, x̃ =

x
lt
, c̃ =

c
cref

,

j̃ =
j

i*lt
, η̃ =

η
b
, D̃b =

4FDbcref

i*l2
t

, l̃b =
lb

lt
, ω̃ = ωt*, ζ̃ =

ζcref

b

(4)  

where the time scale t* is 

t* =
Cdlb

i*
, (5) 

ω is the angular frequency of the applied AC signal, and ζ is the 
concentration impedance (see below). With these variables, Eqs.(1), (3) 
read 

μ2∂c̃b

∂̃t
− D̃b

∂2c̃b

∂x̃2 = 0, D̃b
∂c̃b

∂x̃

⃒
⃒
⃒
⃒

x̃=1
= j̃0, c̃b

(

1+ l̃b

)

= c̃h, (6)  

∂η̃0

∂̃t
− j̃0 = − c̃1expη̃0 (7)  

where μ is the dimensionless parameter 

μ =

̅̅̅̅̅̅̅̅̅̅̅̅
4Fcref

Cdlb

√

(8)  

Linearization and Fourier–transform of Eqs.(6), (7) is performed using 
the following expansions 

Nomenclature 

∼ Marks dimensionless variables 
b ORR Tafel slope, positive by convention, V 
Cdl Double layer volumetric capacitance, F cm− 3 

c Oxygen molar concentration in the CCL, mol cm− 3 

cb Oxygen molar concentration in the TL, mol cm− 3 

ch Oxygen molar concentration in the channel, mol cm− 3 

cref Reference (inlet) oxygen concentration, mol cm− 3 

Db Oxygen diffusion coefficient in the TL, cm2 s− 1 

F Faraday constant, C mol− 1 

f Frequency, Hz 
fW Warburg finite–length frequency, Hz, Eq.(25) 
i* ORR volumetric exchange current density, A cm− 3 

i Imaginary unit 
j Local proton current density in the CCL, A cm− 2 

j0 Cell current density, A cm− 2 

lb TL thickness, cm 
lt CCL thickness, cm 

R Gas constant 
RTL Concentration “resistivity” of the TL, V cm3 mol− 1, Eq.(24) 
t Time, s 
t* Characteristic time, s, Eq.(5) 
x Coordinate through the cell, cm 

Subscripts: 
0 Membrane/CCL interface 
1 CCL/TL interface 
b In the TL 

Superscripts 
0 Steady–state value 
1 Small–amplitude perturbation 

Greek: 
η ORR overpotential, positive by convention, V 
ζ Concentration impedance, V cm3 mol− 1, Eq.(20) 
μ Dimensionless parameter, Eq.(8) 
ω Angular frequency of the AC signal, s− 1  

Table 1 
The standard PEM fuel cell parameters [16] used in calculations.  

Transport layer thickness lb, cm 0.025 
Catalyst layer thickness lt , cm 10− 3 (10 μm) 
Transport layer oxygen diffusivity Db, cm2 s− 1 0.02 
ORR Tafel slope b, V 0.03 
Double layer capacitance Cdl, F cm− 3 20 
Cell current density j0, A cm− 2 0.1 
Pressure, atm 1.0 
Cell temperature T, K 273  + 80  

Fig. 1. Schematic of a transport layer considered in this work. CCL stands for 
the cathode catalyst layer, c1

h and c1
1 are the oxygen concentration perturbations 

(see below). 
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c̃b
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= c̃ 0

b

(
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exp
(
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(
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(
ω̃
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exp
(
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ỹ1
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1

(9)  

where ̃y1 stands for ̃c1
, η̃1

, j̃
1 

and the superscripts 0 and 1 mark the static 
variables and small perturbation amplitudes, respectively. This leads to 
the system of linear equations for the perturbation amplitudes ̃η1, ̃c1

b and 

j̃
1 

in the ω̃–space [15] 

D̃b
∂2c̃1

b

∂x̃2 = iω̃μ2c̃1
b, D̃b

∂c̃1
b

∂x̃

⃒
⃒
⃒
⃒
⃒

x̃=1

= j̃
1
, c̃1

b

(

1+ l̃b

)

= c̃1
h, (10)  

j̃
1
= iω̃η̃1

+ ẽη0
(
c̃1

1 + c̃0
1η̃1)

, (11)  

where c̃1
b and c̃1

h are the oxygen concentration perturbation amplitudes 
in the TL and channel, respectively, and ̃c1

1 is this amplitude at the CCL/ 
TL interface. 

The Tafel law 

j̃0 = c̃0
1ẽη0 (12)  

allows us to eliminate ẽη0 from Eq.(11) leading to 

j̃
1
= iω̃η̃1

+ j̃0

(
c̃1

1

c̃0
1

+ η̃1

)

, (13)  

where ̃j0 is the static current density. Solving Eq.(10) and substituting 
x̃ = 1 into the solution, we find the perturbation of oxygen concentra
tion at the CCL/TL interface ̃c1

b(1): 

c̃1
b

⎛

⎝1

⎞

⎠ = −
j̃
1
tanh

(
q̃lb

)

qD̃b
+

c̃1
h

cosh
(

q̃lb

) . (14)  

where 

q = μ

̅̅̅̅̅̅
iω̃
D̃b

√

. (15)  

Continuity of the oxygen concentration prescribes that c̃1
b(1) = c̃1

1. 

Substituting j̃
1 

from Eq.(13) into Eq.(14), equating Eq.(14) to c̃1
1 and 

solving the resulting equation for ̃c1
1, we come to   

3. Results and discussion 

Eq.(16) relates the three perturbation amplitudes: oxygen concen
tration at the CCL/TL interface c̃1

1, overpotential η̃1, and oxygen con
centration in the channel ̃c1

h (Fig. 1). Of these three amplitudes, ̃c1
h is the 

applied one, η̃1 is the measured one, while c̃1
1 is unknown and it could 

hardly be measured. The latter amplitude makes the problem of theo
retical description of ζ–impedance “as is” under–determined. However, 
if the perturbation of the total (external) current in the cell is kept zero, 

the problem has a unique solution. 
Fixed external current means that the perturbation of total current 

density (capacitive plus conductive) is zero: 

iω̃η̃1
− j̃

1
= 0 (17)  

With this, Eq.(13) simplifies to 

0 =
c̃1

1

c̃0
1

+ η̃1
. (18)  

Using Eq.(17), Eq.(14) takes the form 

c̃1
b

⎛
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⎞

⎠ = −
iω̃η̃1tanh
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)
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+

c̃1
h

cosh
(
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) . (19)  

Substituting c̃1
1 = c̃1

b(1) into Eq.(18), dividing the resulting equation by 
c̃1

h and solving for 

ζ̃ = −
η̃1

c̃1
h

(20)  

we finally get 
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⎜
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⎞

⎟
⎟
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(21)  

The minus sign in Eq.(20) is taken as the variations of cell potential and 
η̃1 have opposite signs. Taking into account that 

c̃0
1 = 1 −

j0

jlim
, jlim =

4FDbcref

lb
, (22)  

in the dimension form Eq.(21) reads 

ζ =
4Fb

̅̅̅̅̅̅̅̅̅̅
iωDb

√

4Fcref (1 − j0/jlim)
̅̅̅̅̅̅̅̅̅̅
iωDb

√
cosh

(
lb

̅̅̅̅̅̅̅̅̅̅̅̅̅
iω/Db

√ )
− iωCdlbltsinh

(
lb

̅̅̅̅̅̅̅̅̅̅̅̅̅
iω/Db

√ )

(23) 

Eq.(23) is a concentration impedance analog to the Warburg finite
–length electric impedance of a transport layer. Dividing ζ by RT one 
gets the pressure impedance ζV/P = ζ/(RT). 

The spectra of Eq.(23) for the two indicated oxygen diffusion co
efficients Db in the TL are depicted in Fig. 2. As can be seen, in the 
Nyquist coordinates the two spectra do not differ. Indeed, the static 
point RTL of the curl in Fig. 2a is independent of the TL transport 

parameters: 

RTL =
b
c0

1
. (24)  

However, the frequency dependence of imaginary part of ζ has a peak 
and a valley (Fig. 2b) with the peak frequency proportional to Db. The 
peak frequency fmax is close to the Warburg finite–length frequency 

fmax =
2.39Db

2πl2
b

(25) 

c̃1
1 = −

η̃1tanh
(
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)(
j̃0 + iω̃

)

μ
̅̅̅̅̅̅̅̅̅̅
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√
+ j̃0tanh

(
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c̃0
1

+
c̃1

hμ
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√

μ
̅̅̅̅̅̅̅̅̅̅
iω̃D̃b

√
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(
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)

+ j̃0sinh
(
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)/

c̃0
1

. (16)   

A. Kulikovsky                                                                                                                                                                                                                                    



Results in Chemistry 4 (2022) 100378

4

(Fig. 3), where the numeric coefficient is 2.39, while in the Warburg 
finite–length formula this coefficient is 2.54. 

4. Conclusions 

A model for concentration impedance ζ of a finite thickness transport 

layer is developed and analytical solution for ζ is derived. The static 
value of ζ is independent of the layer transport parameters; however, the 
imaginary part − I(ζ) has a peak at the frequency close to the Warburg 
finite–length frequency. 
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