£

e —

2
O
=
LL
Y

o

h
IQ

(7))

>
=
ol

AIP
Publishing

A generalized framework for unsupervised
learning and data recovery in computational
fluid dynamics using discretized loss
functions @

Cite as: Phys. Fluids 34, 077111 (2022); https://doi.org/10.1063/5.0097480
Submitted: 28 April 2022 » Accepted: 23 June 2022 - Accepted Manuscript Online: 25 June 2022 -
Published Online: 08 July 2022

ir Deepinder Jot Singh Aulakh, ! Steven B. Beale and Jon G. Pharoah

COLLECTIONS

Paper published as part of the special topic on Artificial Intelligence in Fluid Mechanics

G This paper was selected as Featured

/RN

) &S @

View Online Export Citation CrossMark

ARTICLES YOU MAY BE INTERESTED IN

Physics-informed neural networks for solving Reynolds-averaged Navier-Stokes equations
Physics of Fluids 34, 075117 (2022); https://doi.org/10.1063/5.0095270

Orthogonal grid physics-informed neural networks: A neural network-based simulation tool
for advection-diffusion-reaction problems

Physics of Fluids 34, 077108 (2022); https://doi.org/10.1063/5.0095536

Multi-scale rotation-equivariant graph neural networks for unsteady Eulerian fluid dynamics
Physics of Fluids 34, 087110 (2022); https://doi.org/10.1063/5.0097679

Physics of Plasmas Physics of Fluids

Special Topic: Turbulence in Plasmas and Fluids

Submit Today!

Phys. Fluids 34, 077111 (2022); https://doi.org/10.1063/5.0097480 34, 0771M

© 2022 Authorf(s).

https://images.scitation.org/redirect.spark?MID=176720&plid=1936365&setID=379031&channelID=0&CID=710611&banID=520831033&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=3e1bf161d77115efe3dba8feaaeae8cb589b0dd8&location=
https://doi.org/10.1063/5.0097480
https://aip.scitation.org/topic/collections/featured?SeriesKey=phf
https://doi.org/10.1063/5.0097480
https://orcid.org/0000-0002-5140-2064
https://aip.scitation.org/author/Aulakh%2C+Deepinder+Jot+Singh
https://orcid.org/0000-0002-6755-9111
https://aip.scitation.org/author/Beale%2C+Steven+B
https://aip.scitation.org/author/Pharoah%2C+Jon+G
/topic/special-collections/aifm2022?SeriesKey=phf
https://aip.scitation.org/topic/collections/featured?SeriesKey=phf
https://doi.org/10.1063/5.0097480
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0097480
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0097480&domain=aip.scitation.org&date_stamp=2022-07-08
https://aip.scitation.org/doi/10.1063/5.0095270
https://doi.org/10.1063/5.0095270
https://aip.scitation.org/doi/10.1063/5.0095536
https://aip.scitation.org/doi/10.1063/5.0095536
https://doi.org/10.1063/5.0095536
https://aip.scitation.org/doi/10.1063/5.0097679
https://doi.org/10.1063/5.0097679

scitation.org/journal/phf

Physics of Fluids ARTICLE

A generalized framework for unsupervised
learning and data recovery in computational
fluid dynamics using discretized loss functions @

Cite as: Phys. Fluids 34, 077111 (2022); doi: 10.1063/5.0097480 @
Submitted: 28 April 2022 - Accepted: 23 June 2022 -
Published Online: 8 July 2022

@

View Online Export Citation CrossMark

Deepinder Jot Singh Aulakh,"® (%) Steven B. Beale,'” (%) and Jon G. Pharoah'

AFFILIATIONS
'Department of Mechanical and Materials Engineering, Queen'’s University, Kingston, Canada

?Institute of Energy and Climate Research, IEK-13, Forschungszentrum Jilich GmbH, Germany

Note: This paper is part of the special topic, Artificial Intelligence in Fluid Mechanics.
2 Author to whom correspondence should be addressed: 16djsa@dqueecnsu.ca

ABSTRACT

The authors present generalized finite-volume-based discretized loss functions integrated into pressure-linked algorithms for physics-based
unsupervised training of neural networks (NNs). In contrast to automatic differentiation-based counterparts, discretized loss functions lever-
age well-developed numerical schemes of computational fluid dynamics (CFD) for tailoring NN training specific to the flow problems. For
validation, neural network-based solvers (NN solvers) are trained by posing equations such as the Poisson equation, energy equation, and
Spalart-Allmaras model as loss functions. The predictions from the trained NNs agree well with the solutions from CFD solvers while also
providing solution time speed-ups of up to seven times. Another application of unsupervised learning is the novel hybrid loss functions pre-
sented in this study. Hybrid learning combines the information from sparse or partial observations with a physics-based loss to train the
NNs accurately and provides training speed-ups of up to five times compared with a fully unsupervised method. Also, to properly utilize the
potential of discretized loss functions, they are formulated in a machine learning (ML) framework (TensorFlow) integrated with a CFD solver
(OpenFOAM). The ML-CFD framework created here infuses versatility into the training by giving loss functions access to the different
numerical schemes of the OpenFOAM. In addition, this integration allows for offloading the CFD programming to OpenFOAM, circum-
venting bottlenecks from manually coding new flow conditions in a solely ML-based framework like TensorFlow.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0097480

I. INTRODUCTION

The field of computational fluid dynamics (CFD) has witnessed
increased applications of machine learning (ML) techniques, such as
physics informed neural networks (PINNs),"* deep reinforcement
learning (DRL)," ~ reduced-order modeling (ROM),”” turbulence
closure,'” ' fluid-structure interaction models,"”"* and shape/design
optimization.'”'” The subject of physics informed learning using
PINNS has received considerable attention. PINNs are neural networks

From the point of view of CFD, physics-based learning involves
training where the output of an NN is optimized to follow governing
equations such as the Navier-Stokes, energy equations, and Reynolds-
averaged Navier-Stokes (RANS) turbulence closure. Raissi et al.’
presented pioneering work in the field of PINNs, where for loss formula-
tions, partial derivatives of governing PDEs evaluated by using automatic
differentiation'” are used to calculate residuals for backpropagating to a
training algorithm. Raissi et al." utilized PINNs for solving PDEs, such as

(NNs) that embed the governing equations, such as partial differential
equations (PDEs), as a component of the NN itself. PINNSs are trained
by posing the training as an optimization problem for reducing the
residual of the governing PDEs."” The governing equations are formu-
lated as loss functions by using automatic differentiation (AD). PINNs
enhance the available data content by patching it with physics from the
governing equations.” Hence, PINNs can be successfully applied when
obtaining a large amount of training data is inhibitive.

Burger’s and Allen Cahn’s equations, in a non-discretized domain.

A few studies explored the concept of decomposing a solution
domain into several subdomains.'” >’ For large computational
domains, Dwivedi et al.'’ proposed distributed PINNs (DPINNs) to
solve the issues of PINN robustness and vanishing gradients. DIPNNs
were utilized to resolve flow fields for a lid-driven flow cavity at low
Reynolds numbers (Re). Jagtap et al”” addressed the issue of flux con-
servation between sub-domains by conservative physics informed

Phys. Fluids 34, 077111 (2022); doi: 10.1063/5.0097480
Published under an exclusive license by AIP Publishing

34, 0771111

https://doi.org/10.1063/5.0097480
https://doi.org/10.1063/5.0097480
https://doi.org/10.1063/5.0097480
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0097480
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0097480&domain=pdf&date_stamp=2022-07-08
https://orcid.org/0000-0002-5140-2064
https://orcid.org/0000-0002-6755-9111
mailto:16djsa@queensu.ca
https://doi.org/10.1063/5.0097480
https://scitation.org/journal/phf

Physics of Fluids ARTICLE

neural networks (cPINNs). In cPINNs, flux continuity is enforced
along with sub-domain interfaces. Machine leaning has also been uti-
lized for uncertainty quantification and solution of PDEs.”*

Sun et al.” presented a PINN surrogate for the low Re solution
of the Navier-Stokes equation on a non-discretized domain. The
physics-based loss was the weighted sum of momentum and continu-
ity equations. Furthermore, the comparison of data-driven and data-
free learning approaches showed an increase in training times for
data-free learning. However, data-free learning was beneficial in terms
of circumventing the computational effort required for generating
training data for supervised learning, Zhu et al.” presented a data-free
surrogate for reduced-order modeling using an encoder-decoder NN
for the solution of PDEs. The physics-based loss was posed as minimi-
zation of Kullback-Leibler (KL) divergence in the governing equa-
tions. This model gave better generalization on out-of-distribution test
inputs compared with data-based learning.

Rao et al.” utilized stream functions in place of velocity to ensure
divergence-free conditions commonly observed during the physics-
based solution of the Navier-Stokes equations. The methodology was
applied on a non-discretized domain for solving a low Re flow over a
cylinder. Hseih et al.”® proposed NNs that learned the modifications
of the iterative solver at each iteration. Here, the Poisson equation was
solved, and twofold to threefold speed-ups were observed as compared
to the conventional solvers while preserving a similar level of accuracy.

A. Scope

In data science applications, obtaining error-free data in a metic-
ulous form is challenging, and available data can incur significant
manual effort for its conditioning. In addition, the problem of over-
fitting is quite substantial in data-driven learning and requires addi-
tional regularization techniques incurring more computational effort.
By contrast, the inherent regularization provided by physics-based loss
functions eliminates the need for any regularization.™

It is also evident from the literature described above that the
physics-based approach is inherently advantageous for scientific com-
puting as: (i) it circumvents the inhibitive cost of generating training
data.”” (ii) The trained NNs provide more generalization as compared
to data-driven counterparts.”” The advantages above motivate this
study to explore data-free training focusing on CFD applications.

In parallel, the literature concerning physics-based NN training
predominantly uses automatic differentiation (AD) to formulate the
loss functions for backpropagating the feedback. The stiffness of com-
puted gradients in AD may affect the accuracy, stability, and conver-
gence of the NN training, rendering a higher number of training
epochs.”® In CED, high stiffness problems are commonly encountered
due to strongly coupled PDEs or flow where convective components
are dominant. These problems are well resolved in CFD solvers
through advanced numerical/discretization schemes and segregated
solution techniques such as pressure-linked algorithms.

The present work combines the advantages of both data-free
learning and discretization to propose a framework that can enable
data-free training of NNs using CFD principles. Specifically, the cur-
rent study is unique because it utilizes discretization schemes instead
of AD to formulate and integrate loss functions in CFD algorithms.
The discretized loss functions can be tempered for flow-specific discre-
tization by choosing from various well-developed discretization
schemes of CFD. Furthermore, the presented loss functions also have

scitation.org/journal/phf

modular nature; that is, any given governing equation can be posed as
a loss function to integrate NN training into CFD algorithms.
Leveraging this modularity, the NNs are trained to predict specific
solution variables, such as Poisson’s equation as a loss function for pre-
dicting pressure, energy equation for temperature, and turbulence clo-
sure models for eddy viscosity.

B. Objectives and contributions

The main goal of the present study is to use finite volume-based
discretization techniques to formulate and integrate grid-based loss
functions into CFD algorithms. The proposed loss functions realize
the NN training by integrating with CFD algorithms like any CFD
solver (PBiCG, GAMG, etc.). The CFD algorithms presented are mod-
ified to accommodate the loss functions, feedback loops, and NNs. For
this study, the “semi-implicit method for pressure-linked equations
(SIMPLE)™" is used for mounting ML algorithms. The mounting of
NN onto the SIMPLE algorithm enhances training generalization by
allowing different multiphysics phenomena to be easily added to NN
training.

The use of finite-volume methods is motivated by their inher-
ently conservative nature and the availability of various discretization
techniques for problem-specific tailoring of loss functions. Another
benefit of the discretized loss functions is their compatibility with grid-
based CFD packages such as OpenFOAM.” The authors utilize this
compatibility to present an integrated ML-CFD framework that allows
for data-free training of NNs through a two-way information
exchange between TensorFlow and OpenFOAM. The integration of
ML-CFD packages allows for offloading the CFD programming on an
already established CFD package (OpenFOAM), circumventing the
commonly observed bottlenecks by coding CFD algorithms, geometry,
and equations on a standalone ML package TensorFlow.

The authors also present a novel hybrid learning methodology
for combining data-driven and data-free learning for training the NNs
from partially available or sparse data. In traditional supervised learn-
ing, the partially available data are not able to train NNs accurately.
Instead, the hybrid loss function here extracts the information from
available data and patches it with a physics-based loss function to
accurately train the NNs. The presented loss functions are then vali-
dated with the SIMPLE algorithm. Here, one or multiple steps of
SIMPLE are replaced with an NN solver to test the coupling of NNs
with the rest of the algorithm running in a conventional CFD manner.
Also, the presented NN algorithms are deployed online,” as this helps
the training of NNs to be independent of any storage bottleneck(s).

Il. METHODOLOGY

In the context of CFD, data-free or unsupervised learning can be
regarded as a training paradigm where an NN learns by using govern-
ing equations such as the Navier-Stokes equations as loss functions.
For any physics-based ML approach, loss functions play a pivotal role
in constraining the NN learning to satisfy the physics involved. Hence,
it becomes increasingly important to accurately pose the governing
equations as loss functions. The finite-volume method is widely uti-
lized for solving CFD problems owing to its inherent conservative
nature. The proven utility in CFD makes a finite-volume formulation
a natural choice for discretizing the loss functions."’ Furthermore, by
using the finite-volume method, loss functions can be tailored in a
problem-specific manner similar to CED; that is, the broad knowledge

Phys. Fluids 34, 077111 (2022); doi: 10.1063/5.0097480
Published under an exclusive license by AIP Publishing

34,077111-2

https://scitation.org/journal/phf

Physics of Fluids ARTICLE

base of CFD can be used to choose the targeted discretization techni-
ques suited for specific problems.

Briefly, the general transport equation for a scalar property, ¢, in
integral form, for a finite-volume, V,, centered at p, is given by Eq. (1)
as follows:

Jjw vaaap—:bd” JVPV (pug)dv — JVPV (pTyVp)dV | dt

- J:W (JV S¢(¢)dV> dr, (1)

where p is the density, u is the velocity vector, I'y is the diffusivity,
and S, is the source term. For steady state, the first term on the left-
hand side of Eq. (1) is zero. The volume integrals in Eq. (1) are con-
verted into surface integrals through Gauss’s divergence theorem to a
second-order accurate discretized form [Eq. (2)]

Jv(v -¢)dV = ; Sr.cf.)

where S¢is an outward pointing area vector for the cell face, ¢ is a gen-
eral vector quantity, and the subscript f signifies the value of quantity
at the center of the cell face. The discretized form of Eq. (1) (steady
state) is given as

D S (pU)y =D (L) S -(V)y = SV + S Vipy, (3)
f f

where S, and S, linearize the source term as Sy(¢p) = S, + S, .
Finally, a linear algebraic Eq. (4) is formed for each finite volume

apd)p + Z an¢n = bp7 (4)

where subscripts p and # signify the values corresponding to cell cen-
tered at p and its n neighbors, respectively. Additionally, a, and a,, are
linear coefficients, and bp on the right-hand side contains discretized

Hidden layers

Input layer

Output layer

scitation.org/journal/phf

source and spatial terms. Equation (4) couples the value of solution
variable ¢, with neighboring ¢,,. The solution is said to converge after
a given number of iterations, if the ¢,-solution satisfies Eq. (4) within
a certain accuracy threshold.

A. Discretized loss function

Equation (4) can be rewritten as Eq. (5) to provide the measure
of deviation (loss,) of any arbitrary value of ¢; from the converged
solution ¢, at each respective time step as follows:

loss, :f(upqﬁ; + Z and, — bp)y ©)

where if ¢;, is predicted by an NN, then loss,, can serve as feedback for
the learning algorithm. The loss,, can then be backpropagated for train-
ing the NN to obtain a converged solution for a time step, ¢, at cell cen-
ter p.

Equation (5) provides feedback for one spatial point if feedback
is generated for the entire domain as shown in Fig. 1. The output of
the loss function is a column vector with error/residual (mean absolute
error) information for each node of the domain coupled with neigh-
bors. The array of loss values helps with focused training. The loss
function identifies the areas in the domain that are diverging from the
desired solution and feedback the training loop accordingly.

Figure 1 shows the schematic of an NN being trained by the dis-
cretized loss function. The input to the NN can comprise of but is not
limited to boundary conditions and spatial coordinates. As shown in
Fig. 1 predicted output field of N finite-volume centers
(@1, 93, .., By, ..., D) is fed to discretized loss function f(¢), and
the array of the residuals obtained is used as feedback to train the NN.
The feedback array is of equal size to the output from the NN. Hence,
each output node of the NN receives a scalar loss value corresponding
to the node’s predicted output scalar. For example, if the output node
has ten neurons, the loss array will also be of size ten. This process is
similar to training convolutional neural networks (CNNs). The feed-
back loss array has the size of the last layer of the CNN. Each node of

Discretized loss functions

FIG. 1. Schematic of the neural network being trained by data-free discretized loss functions (yellow box). qbz is the predicted variable at cell center p. The neural network
shown here is fully connected; however, any neural network architecture can be used for the given methodology.

Phys. Fluids 34, 077111 (2022); doi: 10.1063/5.0097480
Published under an exclusive license by AIP Publishing

34,077111-3

https://scitation.org/journal/phf

Physics of Fluids

the CNN’s last layer receives the feedback as a corresponding scalar
value, which is part of a larger loss array. In this way, the NN learns to
predict the correct field at every time step. If done for multiple cases
simultaneously, such as different inlet velocities for flow through a
channel, a batch of loss arrays can be created for training the NN. This
training is similar to batch-based training in supervised learning,
where multiple labeled data points are fed to a feedback algorithm for
adjusting the weights of the NNs. The trained NN can be used to pre-
dict the solution field for boundary conditions not seen during train-
ing. Further details about implementation of physics-based loss
function are outlined in Appendix B 1.

From Fig. 1, it can be seen that the NN considers full-field data in
a single pass, and its size scales with the mesh size (N). Considering
full-field data is a commonly used approach in the literature and is
generally robust to global flow parameters.*"*” The NNs spanning full
field are better at learning multi-scale phenomena. However, for large
values of N, the NNs can have problems in scalability. The NN should
be both structurally efficient (lesser trainable parameters) and inde-
pendent of the mesh size to avoid scalability issues.

The convolutional neural networks (CNNs) are regarded as
structurally efficient as compared to fully connected NNs. The CNNs
with patch-based learning'* can reduce the size dependence of NNs
on mesh size. Also, the specialized NNs such as unstructured convolu-
tional neural networks (UCNNs)* and graph convolutional neural
networks (GCNNs,">"" fewer parameters than U-nets) can be
explored owing to their superior performance for unstructured and
body fitted meshed, respectively.

However, the focus of the current study is to develop a physics-
based learning methodology in integration with CFD algorithms;
specialized techniques for optimizing the network size are considered
out of scope. The motivation for using the fully connected NNs
was simplistic deployment due to their structurally agnostic nature.

a.

ARTICLE scitation.org/journal/phf

As opposed to CNNs, the architecture of fully connected NNs does
not need to consider the assumption about inputs and outputs. Hence,
making fully connected NN ideal for this study by enabling authors
to focus on exploring applications of the proposed methodology.
Additional details about the architecture and size of NNs are given in
Secs. IVA, VA,and VIA 1.

B. Data recovery or resolution enhancement using
physics-based loss functions

In supervised learning, the accuracy of the trained NN is depen-
dent on the fidelity of the data. Figure 2 demonstrates this dependency,
where a trained NN deviates from the ground truth due to inconsis-
tencies in the training data. As shown in Fig. 2(a), the resolution of the
available data is not enough to capture the oscillations in the ground
truth resulting in the learned NN giving erroneous predictions. In
CEFD, this corresponds to the situation where the training data pro-
vided are for a coarse grid. The trained NN is susceptible to missing
the small-scale phenomenon occurring in the domain. In experiments,
this corresponds to sparse probe locations, where the limit on probe
numbers can result in missing intricate details about the flow being
measured.

The missing data can render a trained NN to deviate from the
ground truth, as shown in Fig. 2(b). In the context of CFD, missing
data on a specific location in the solution domain can be seen as either
a coarse patch of mesh or simply data lost during manual condition-
ing. Figure 2(c) shows the random patches (dotted red) of information
missing in a dataset of m instances of a square domain. Also, in experi-
ments, training data can be lost due to a faulty patch of probes result-
ing in either erroneous or no data assimilation.

The two issues mentioned above can render the partially available
data to lose its utility as partial data cannot be used to accurately train
the NN by supervised learning alone. From a general perspective, the

b.

N\

7\
\ \ =
o/

Ground truth

Data driven learning
Available data

° Physics loss location

Missing patches in training
data-sets

FIG. 2. Comparative example of neural network fitting with hybrid training vs supervised training. (a) Case where data available is too coarse to fully resolve the small scale
oscillations. (b) Case with some parts of data missing. (c.) Shows schematic example of patches of missing data (dotted red) in a 2D domain for training dataset of m instan-
ces. These data can be missing due to malfunction of sensors in experiments, or simply a patch of mesh, which is coarse and requires further refinement to resolve flow

accurately.

Phys. Fluids 34, 077111 (2022); doi: 10.1063/5.0097480
Published under an exclusive license by AIP Publishing

34,077111-4

https://scitation.org/journal/phf

Physics of Fluids ARTICLE

two issues are inherently similar; that is, for the second case, the data
are missing in concentrated patches [Fig. 2(c)]. In the first case, the
data can be viewed as sparsely missing throughout the domain; that is,
the concentration of the available data is not fine enough to match the
resolution required.

The problems above can be addressed by using a priori knowl-
edge in the form of the governing equations to augment learning from
the partially available data. A hybrid learning methodology is pre-
sented for using physics-based learning in conjunction with data-
driven training. In hybrid learning, the loss function is a combination
of the physics-based loss function and data-driven loss functions, as
shown in general form by Eq. (6),

Loss = lossdata driven U ZOSSPhySiCS7 (6)

where grid points or probe locations of data-driven (l0ssgatq driven) and
physics-informed learning (lossypysics) are mutually exhaustive sets of
the entire domain.

For the first case, the coarse data can be used as an anchor to con-
tribute toward the data-driven loss, while for additional learning
points where no ground truth data are available, a physics-based loss
can be used to train the NN. Figure 2(a) shows the schematic of the
first case, where the orange dots represent available data and blue dots
represent the locations where the physics-based loss function is used
to calculate the loss.

Similarly, for the second case with missing data, the data-driven
and physics-based losses are used to train the NN where the physics-
based loss function replaces the lost data, as shown in Fig. 2(b). It
should be noted that another solution to the problem of resolution
enhancement and recovery of missing data is to redo the entire CFD
simulations (multi-grid) or experiments. However, this can be a com-
putationally intensive process as the CFD simulation needs to solve
through the domain as a whole for each instance of the training data-
set. By contrast, the hybrid approach applies only to domain locations
where data are missing, as shown in Eq. (7). The hybrid approach thus
builds upon any previous effort invested to generate the training data,
even if some portion of that data is missing. The same holds for redo-
ing the entire experiment again,

Lo g<¢k 7 d)ired) » Uf(aj(pf + Z andy — bj) . ()

physics

where k and j are sets of points where data are available and missing,
respectively, such that k| Jj = N, note that N is the set of all the points
in the domain. The union sign in Egs. (6) and (7) signifies that two
mutually exhaustive loss sets (data-driven and physics-based) are com-
bined to form a unified loss array (described in Sec. IT A) for the entire
domain. Further details about the union are provided in Appendix B2
and Fig. 23.

In contrast to previous studies, individual terms in Egs. (6)
and (7) are not multiplied by balancing coefficients. Apart from stan-
dard regularization, balancing/weighing coefficients are usually
required when each loss term optimizes a different flow variable or
equations with varying optimization characteristics. To further elabo-
rate, in a case where one term optimizes pressure, and the other opti-
mizes the velocity. The magnitude difference between the velocity and
pressure is addressed by weighing coefficients. However, in the present
study, both terms in the equation optimize the same variable; hence,

1,2,20

scitation.org/journal/phf

both have similar magnitudes. This similarity in magnitude eliminates
the need for any balancing coefficients.

The reader will note that the problem of missing data patches is
more common in experimental data. For proof of concept and brevity,
in the present study, the authors only work on the CFD data missing
some patches. Applying hybrid learning to reconstruct missing data for
experiments is a part of more detailed future work. As the fidelity of the
reconstructed data is highly dependent on the accuracy of the governing
equation used to define the flow phenomena, the recovery of experi-
mental data requires governing equations to be coupled with additional
techniques such as transfer learning for accurate reconstruction.

lll. ML-CFD INTEGRATION

The loss functions presented in this study are deployed using mod-
ified pressure-linked CFD algorithms. The respective NN for each solu-
tion step is trained by posing the corresponding governing equation
(solved at that step) as a loss function. The present study focuses on
modifying SIMPLE algorithms. However, the given methodology can be
easily applied to any other CFD algorithm. The details of the modified
SIMPLE algorithm are outlined in Secs. I'V-V1I, where NNs solve/predict
solutions to equations such as the Poisson-like pressure equation, the
energy equation for heat transfer, and a one-equation turbulence model.
The mixed approach adopted in this study for solving some equations
with NN, and the rest with a CFD solver is necessary to gain insight
into coupling the dynamics of NN-based solvers with the CFD solvers.
In addition, the discretized nature of loss functions facilitates the deploy-
ment of data-free learning in contemporary finite volume-based CFD
frameworks such as OpenFOAM. The present study employs
TensorFlow for training the NNs and OpenFOAM for defining the flow
problems. A PythonC API is used to integrate OpenFOAM and
TensorFlow for utilizing the functionality of both in a single consoli-
dated platform in real-time. The PythonC API makes TensorFlow func-
tionality available within OpenFOAM by running it in a Python virtual
environment.”’ A bridging code takes the data from a C++ environ-
ment (OpenFOAM) and feeds it into a Python environment running
TensorFlow.” The bridging code used here realizes unsupervised learn-
ing by allowing for real-time and two-way data exchange between
TensorFlow and OpenFOAM. The two-way coupling between CFD
and ML is also essential for stability and convergence of the NN-based
solution of the governing equations.” In every solution iteration,
OpenFOAM sends discretized loss function updated with recent field
values to TensorFlow and receives the solution field predicted by NN,
which is being trained simultaneously. The real-time deployment is
essential for any data-free learning as NNs under training simulta-
neously require the residual information from the equation (used as loss
function) whose solution they are predicting. The presented ML-CFD
integration further advances the current state of art OpenFOAM-
TensorFlow integration, which only allows for supervised learning,”

The ML-CFD framework essentially provides the freedom of
implementing any NN architectures and learning algorithms available
in TensorFlow with any CFD algorithm or numerical schemes devel-
oped for OpenFOAM. The mutual access of internal libraries of each
program to the other essentially builds a CFD-based NN trainer that
can adapt to changing flow conditions like a stand-alone OpenFOAM
simulation. The main benefit of this ML-CFD framework is that the
task to code different geometries, CFD algorithms, and discretization
schemes is offloaded to OpenFOAM. The offloaded coding effort

Phys. Fluids 34, 077111 (2022); doi: 10.1063/5.0097480
Published under an exclusive license by AIP Publishing

34,077111-5

https://scitation.org/journal/phf

Physics of Fluids ARTICLE scitation.org/journallphf

would have presented a significant bottleneck if a stand-alone ML A. Lid-driven cavity flow

application (TensorFlow) was used to code CFD also. This section describes the use of an NN-based solver to resolve

IV. SOLUTION OF THE PRESSURE EQUATION the flow in a lid-driven cavity. The loss function, in this case, is the

In the SIMPLE aleorithm. flow variables are calculated in a seore- pressure equation. The pressure equation effects the mass conservation
gated manner, as showngin algor,i thm 17 First. the velocity field s ¢ algsu- by intricate coupling between the momentum and continuity equa-
lated from ’djscretize 4 momentum equatior; Non-linearity in the tions. In the pressure equation, the complex interplay of variables such
momentum equation occurs due to the flux term; which is itself a function as pressure, Velo.ci.ty, and flux makes it ideal for testing the accuracy
of velocity computed from values at the previous iteration. The solution of and coupling ability of the NN solver. The flow sglved here is at _R ¢
the momentum equations is followed by the next step, namely, the calcula- 100. The .NN solver % parately uses both fully physms—based [Eq. (5)]
tion of the pressure from the Poisson equation. The pressure obtained a.nd hybn,d loss 'ﬁmctlons [Eq. (7)]. The approach of solvmgjilow at'a
here is used to calculate mass flux, followed by a correction of the velocity “t“glli Reis mottlvla}gc: bz 5h::hwork on PIN;\ISPIKHI\?gt ap o al.l" da(l;c.l Jin
field before the start of the next iteration. For reference, a detailed descrip- et ax Jagtap et al estec The accuracy of © S UsIng a ACCriven
tion of the standalone SIMPLE algorithm is provided in Appendis A. cavity case corresponding to Re 100. This approz?ch is suitable for t.est—

This section uses an NN to solve the pressure equation as a loss ng the accuracy of NN asa solver but. does not impart the gene.:rahza—
function. Algorithm 1 shows the training and testing framework of the tion to .the NN to predict ﬂo.w ata .dlfferent Re after t}.le solu.tlon for
NN based on a fully physics-based loss function. In the training loop, the tramlpg case (Re 100) is obtamed._ Hence, in this section, the
the NN predicts the pressure field, which is subsequently fed to a loss aut.hors did not subject NN to the prediction 109p and rather treated
formulation; the loss value thus obtained is a measure of the deviation Poisson’s equation as a proof of concept for testing the accuracy and

; . : . ’,
of the solved pressure from the real solution. This loss value is then fed i?lu%llmf O,f N(I;IS\I;? solvers, EOt ap gei:dtlctorfs. Pf}cl)wfelver, n ieics. v an;dl
back to the NN for its training, in turn improving the pressure value ’t l: lr ame) s are;;e tats pref ctors for the Tow probiems suc
for the next iteration of the solution. For the prediction loop, the as turbuience closure anc hieat fransier.

trained NN is used to predict the pressure for given boundary condi- .For solving pre.ssure.by NN solver, the Input to the NN is the
tions, and this pressure is used to calculate the velocity and flux fields velocity field at each iteration, and the output is the pressure field. The

for the flow problem at hand until conversence. In the brediction NN architecture consists of five levels of layers with tanh activation.
loop. loss calcglations are not necessa gence: P There are two input layers at the first level, each of size 1600. The x
p)It should be noted that in ther};resent study, the authors are and y components of the velocity field are, respectively, fed as input to

mounting NN solvers only on the SIMPLE algorithm. The motivation the corresponding input layer. Each input layer further feeds a corre-

for using the SIMPLE algorithm stems from its use in a wide range of sponding fully connected layer of five neurons for the second level.
CED applications. However. the current approach is valid for an The output of each five-neuron layer is concatenated at the third level
other nE il erical al.gorithm ’ PP Y and further fed to a fully connected and penultimate layer of five neu-

rons. The production and fifth-level layer have a size of 1600 and out-
ALGORITHM 1: SIMPLE algorithm (simpleFOAM*) modified to train NNs for pres- ~ puts pressure field. The total number of trainable parameters here is

sure prediction. 25665. By comparison, Jagtap et al.”’ used 12 cPINNS for solving the
lid-driven cavity flow; here, the domain was divided into 12 sub-
1: Obtain approximate velocity field (u) by solving momentum domains corresponding to each cPINN. The present authors approxi-
equation. The pressure (P°'¢) used in this step is either from the mate trainable parameters for all cPINNs as 24984 compared with
previous iteration or an initial guess. The velocity here is not 25665 in the current study.
divergence free. As discussed in Sec. IT A, the present study focused on loss func-
2: if Conventional SIMPLE algorithm then tions, and no optimization study was performed for NN architecture.
3: Solve Poisson equation for pressure distribution (PP). This Hence, NN scales with the mesh size. However, the size dependence of
equation is formulated using the velocity field obtained in step 1. NN on the mesh and the number of trainable parameters can be
4: if Training the NN then reduced by order lozf’lr‘nagnitude using techniques such as patch-based
5: Predict the pressure (PP) using NN. learning, GCNNs. ~
6: Substitute the (PP) to discretized Poisson/pressure equation . .
posed as a loss function to calculate the loss at each grid 1. Training hyper-parameters and comparison to PINNs
point. In this study, Adam optimizer” is used for optimizing the NN
7: Feedback the learning algorithm for training the NN. parameters. The initial learning rate at the start of the first SIMPLE
8: if Predicting pressure from NN then iteration is 1 x 10>, The batch size is one since a single Re is used as
9: Predict the pressure (PP) from the NN. Input to the NN can a training/solution point. As mentioned earlier, choosing a batch size
be velocity field, boundary conditions or geometry. of one is motivated by previous studies on PINNs where a NN is used
10: A new set of conservative mass fluxes is calculated using as a solver rather than a predictor. This batch size is also necessary to
pressure P"", which is obtained by under relaxing the compare the current approach directly with the PINNs. Each SIMPLE
pressure using P"e¥ = peld o (PP — poldy, iteration has 40 epochs for training the NN. The learning rate is sched-
11: if Velocity is needed before next momentum solution then uled both locally and globally. Globally, the initial learning rate at the
12: Correct velocities using PV, start of nth SIMPLE iteration is given by (1 x 107%)/(2 x (n — 1)).

Locally (inside each SIMPLE loop), the global learning rate at the start

Phys. Fluids 34, 077111 (2022); doi: 10.1063/5.0097480 34,077111-6
Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf

Physics of Fluids ARTICLE

0 10 20 30 35 40 50
lterations

FIG. 3. Loss/mean squared error evolution for solution of pressure equation by NN
solver. The loss function used here is fully physics based.

of each SIMPLE iteration is reduced by a factor of five after every five
epochs.

Figure 3 shows the mean square error for a fully physics-based
loss function for solving lid-driven cavity flow at Re 100. It can be seen
that the loss reduced to 1 x 107° after 35 iterations of the SIMPLE
loop. As mentioned earlier, each iteration of the SIMPLE loop has 40
epochs/back passes. Hence, in this case, the discretized loss function
reached an error threshold of 1 x 107° in 35 x 40 = 1400 back passes
of loss to the optimizer (epochs in supervised learning). In the study
by Jagtap et al.,”’ the AD-based loss function trained cPINNs to a sim-
ilar error threshold in approximately 4 x 10° epochs. Hence, the dis-
cretized loss functions are about two orders of magnitude faster than
AD for similar trainable parameters (25 665 for the current study and
24984 for Jagtap et al™).

In this section, the central difference scheme discretizes the loss
function. The loss function, in this case, takes the form of Eq. (5) for fully
physics-based and Eq. (7) for hybrid learning. Each term of Poisson’s
equation is linearized using finite-volume discretization as explained in
the Sec. I1. The linearized terms are put together by using algebraic oper-
ations such as addition and subtraction to formulate the physics-based
loss in the form of Eq. (5). Here, simpleFoam (CFD solver) uses a
GAMRG solver for pressure and a smooth solver for velocity.

a. b.
Physics-based

Hybrid

scitation.org/journal/phf

The cPINNs are chosen for comparison as they are faster to con-
verge than standard PINNs.”’ The primary reason behind this speedup
is that discretized loss functions take advantage of well-developed seg-
regated solution methodology of SIMPLE to decouple the highly cou-
pled and stiff formulation of momentum and continuity equations,
whereas cPINNSs try to learn this implicit coupling by simply relying
on loss optimization, which is generally reliable for learning uncoupled
systems but can be unstable for learning highly coupled and stiff for-
mulations. However, the given comparison is preliminary, and more
comprehensive analysis of backpropagation of error is required to
understand the speedups further.

For the hybrid [Eq. (7)] loss function, a part of the pressure field
missing from the available solution data in the patch is as shown in
Fig. 4(c), dotted red region. Here, the authors assess the patching capa-
bility of the hybrid loss function to recover any information lost, for
any given data point in a training dataset. The analysis of loss evolu-
tion in hybrid learning is given in Appendix C.

2. Validation of NN accuracy for solving pressure

Contours comparing the solutions of the CFD benchmark and
the NN solver for and pressure (P/pU2) and velocity magnitude
(4/Uy) are shown in Figs. 4 and 5, respectively. Here, u and P are
velocity magnitude and pressure, respectively, and U, is the velocity
of the lid. It can be observed that the contour plots for the solution
with the NN-based solver match well with those of the CFD solver.
Also, the streamline plot [Fig. 5(b)] shows the secondary vortex in the
velocity field obtained from the reconstructed pressure field.

For quantitative comparison between the two solutions, Fig. 6
provides the centerline velocity and pressure comparison for NN-
based flows with CFD solver. Additionally, the results are compared to
results from Ghia et al.*” for further validation. It can be seen that all
the results are in good agreement. Across the domain, the L2-norm
error in NN solution with respect to CFD solution for pressure
(P/pUgo) is 7.41 x 10~ (fully physics based) and 8.8 x 10~ (hybrid
learning). At boundaries, the error for P/pU?, is 7.56 x 10~° for fully
physics-based learning and 8.9 x 107 for hybrid learning. For veloc-
ity, (u/Us) the domain error is 1.96 x 10~> for physics-based learn-
ing and 2.11 x 10> for hybrid learning. Hence, both loss functions

1.4e+00
B

— 0.5

C.
CFD-solver

—0

l -7.9e-05

FIG. 4. Comparison of the pressure (P/pU?,) contours for the lid driven cavity problem at Re 100. (a) Physics-based loss function, (b) hybrid loss function. (c) CFD-Solver
(GAMG). Also, in (c), red rectangle indicates the location where pressure data were missing and retrieved through hybrid learning.

Phys. Fluids 34, 077111 (2022); doi: 10.1063/5.0097480
Published under an exclusive license by AIP Publishing

34, 077111-7

https://scitation.org/journal/phf

Physics of Fluids

a.
Physics-based

ARTICLE scitation.org/journal/phf

C.
CFD-solver

FIG. 5. Comparison between velocity (u/Us,) contours and streamlines for the solution of lid driven cavity flow problem by CFD-based and NN-based solver at Re 100. Here,
U, is the lid velocity. (a) NN solver with fully physics-based loss, (b) hybrid loss function, (c) CFD solver. Additionally, the streamlines plot in (b) shows secondary vortices in

the velocity patch reconstructed from recovered pressure data.

(hybrid and fully unsupervised) can give reasonably good solutions for
the pressure equation.

In addition, the results show that data-driven learning aug-
mented with physics-based loss function can be used to train the NN
even with some data missing, which is not possible with a purely data-
driven approach. Hence, as discussed in Sec. II B, the hybrid function
helped to extract the information from the partially available data with
a targeted computational effort as opposed to performing computation
over the entire domain.

To reiterate, in this section the flow corresponding to only one Re
for each loss function was used for training the NN; this does not pro-
vide the generalization required to predict the flow at unseen Re. The
generalized NN are trained in Secs. V and VII, where the prediction
loop is run to obtain solutions at unseen flow conditions, which are
not part of training solutions.

V. SPALART-ALLMARAS CLOSURE MODEL USING
NEURAL NETWORKS

This section uses an NN to predict turbulent eddy viscosity for
the closure of the Reynolds-averaged Navier-Stokes (RANS) equa-
tions. RANS are time-averaged equations describing the steady-state
behavior of turbulent flows. In RANS, the instantaneous quantities are
decomposed via Reynolds decomposition into time-averaged and fluc-
tuating components. For an incompressible Newtonian fluid flow, the
RANS equation is given by Eq. (8) as follows:

ou; - 071 _ - ——
pﬂja—é = f; +a—xj [71)517 +2uS;; — puéM}] ; ®)

where superscripts # and ' denote time-averaged and fluctuating
components, respectively; f; is an external force vector; §; is the
Kronecker delta; S ij is the mean rate of stress tensor; and pu} u](denotes
the components of the Reynolds stress tensor. The presence of
Reynolds stresses requires additional model specifications for RANS
closure. One such model is the Spalart-Allmaras (SA) closure” for
kinematic eddy turbulent viscosity ;. SA is a one equation model
written as follows:

o + ujg—; =Cy[1 —f,)SP + é {V.(v+2)Vi]+ G, |V}

Phys. Fluids 34, 077111 (2022); doi: 10.1063/5.0097480
Published under an exclusive license by AIP Publishing

ot
b 7*
- |:CW1fW - K_;ffz:| (E) +f11AU27 (9)
vy = ﬁf‘,” (93.)
3
4
= 9b
fVl X3 + C?,l I ()
v
== (9¢)
14
. v
S=5+ vay (9d)
_ V4
fn=1- TF g (%)
1/6
1+C5,
w=g Frce| (99
34,077111-8

https://scitation.org/journal/phf

Physics of Fluids ARTICLE

a.
0.1
8
=5 0.0
=
_0.11 —*— Physic-based
v Hybrid
_0.2] T CFI?-SoIver
= Ghia
0.0 0.2 0.4 0.6 0.8 1.0
L*
C.
—e— Physic-based
v Hybrid
=0.019 ----- CFD-Solver
8
R
3, —0.024
—0.031

00 02 04 06 08 10

scitation.org/journal/phf

b.
1.0
0.8
0.6 1
-
0.41 —e— Physic-based
v Hybrid
021 A e CFD-Solver
= Ghia
0.0
-02 00 02 04 06 08 10
ulUy,
d.
1.0 —e— Physic-based
08l v Hybrid
----- CFD-Solver
0.6
=
0.4
0.2
0.0
-0.08 -0.06 -0.04 -0.02 0.00
PlpU2,

FIG. 6. Centerline plots for velocity profile at Re 100 for physics-based loss (red), hybrid loss (blug), CFD solver (dotted black), and Ghia et al.* (black squares). (a) Plots the
v/ U along the centerline parallel to x axis. (b) Compares the uy /U, along the centerline parallel to y axis. [(c) and (d)], respectively, show P/pU? along centerline parallel
to x axis and y axis. Here, L* = [/L, where L is edge length and / is the position along the edge.

1 (0u; Ou;
Q== heb)
i3 (axj ax,->’ 8
v
r= o (9h)
Of (o, 2 :
ftl = Ctlgf exp _Ctz AU? [d +gt dt] ’ (91)
S =,/2Q;Q;,)
ffz = Cf3 exp(_ct4 X2)7 (9k)
g=r+C,,(1° —r), (91)
1
Gy, =Gy U C) (om)

where ¢ = %, Cp, = 0.1355, Cp, = 0.622, k = 0.41, C,,, = 0.3, C,,,
=2,C,=71,C, =1,C, =2, C, = 1.1,and C, = 2.

The NN in RANS solution is trained to predict kinematic turbu-
lent eddy viscosity (v,) using Eqgs. (5) (fully unsupervised) and (7)
(hybrid). Equation (9) is discretized over the entire domain, and feed-
back is generated as described in Sec. II. The authors have only used
the SA model, though the given methodology can also be employed to
solve other turbulence closure models such as RNG k — ¢™’ and k — o

SST"! as discretized loss functions. For training the NN, the loss func-
tions are integrated into the SIMPLE algorithm as given by steps 11 to
15 of algorithm 2. The NN is invoked at the start of the SIMPLE loop
for prediction. As shown in algorithm 2, steps 2-4, and the v, pre-
dicted by the trained NN.

In previous studies,””* *” the input to the NN is a velocity field
obtained from a potential flow solution corresponding to the different
boundary conditions on which the NN has to be trained. Thus, the
objective of the training is to learn a relationship between the potential
velocity field for a boundary condition and its corresponding steady-
state v,. The use of potential flow as input to NN is one of the many
input approaches that can be used to identify any underlying flow fea-
tures that can affect the v, depending upon the application.

For this study, the preference of potential velocity field over
actual velocity field as an input to NN stems from the problem where
NN has to retrain at every iteration of the CFD algorithm, as the veloc-
ity field changes at each iteration, and so does the learned relationship
between velocity field and v,. The NN has to learn new mapping at
every SIMPLE iteration, making training computationally expensive.
However, using the potential flow field (initial condition), which is
constant for the entire course of the simulation, the NN needs only to
refine the learning from the previous iteration for the new values of v,
obtained corresponding to the constant potential velocity field.

Phys. Fluids 34, 077111 (2022); doi: 10.1063/5.0097480
Published under an exclusive license by AIP Publishing

34, 0771119

https://scitation.org/journal/phf

Physics of Fluids ARTICLE

ALGORITHM 2: Modified SIMPLE to train an NN for RANS turbulence closure
modeling.

1: Calculate the potential velocity field (uP) for the given boundary
conditions.

2:if Trained NN is being used to predict v, then

3: Predict the (v;) by using calculated potential velocity field

(uP) as an input to the trained NN.

4: Repeat steps 5 to 8 until convergence.

5: Obtain approximate velocity field (u) by solving momentum
equation. The pressure (P°') used in this step is either from the
previous iteration or an initial guess. Here, kinematic turbulent
eddy viscosity (v;) term is added for closure of RANS model.
(v¢) is obtained from previous iteration, initial guess or
prediction from trained NN.

6: Solve Poisson equation for pressure distribution (PP). This
equation is formulated using the velocity field obtained in step 1.

7: A new set of conservative mass fluxes is calculated using
pressure P"" which is obtained by under relaxing the pressure
using PV = PO 4 ¢, (PP — o),

8: Correct velocities using P"".

9: if SIMPLE algorithm with conventional solver for solving v, for
RANS then

10: Solve Spalart-Allmaras (SA) model for v, to be used in next
iteration.

11: if NN is being trained using SA as loss function in SIMPLE

algorithm then

12: Discretize the given RANS turbulence closure model to be
posed as physics-based loss function. For this study it is SA
model [Eq. (9)].

13: Predict the (v;) from NN, with potential velocity as input and
substitute corresponding variable, i.e., ¥ into loss function to
obtain the deviation at each grid point.

14: Feed-back the NN with the loss values for unsupervised
training.

15: The (v;) obtained after reaching a certain loss threshold is fed
to RANS for closure in next iteration.

16: Go to step 5 until convergence.

Another drawback of using the actual velocity field as input to
NN is that at the end of the training, the NN learns the relationship
between converged actual velocity and v, It can cause divergence
when the trained NN is used to predict v, as in the prediction loop, as
the initial velocity field is different from the converged velocity field.
The values of v, obtained using the velocity field of the initial iteration
as an input to NN can steer the solution away from the convergence.
Hence, the potential velocity field is a good alternative as it is easily
computable and utilizes initial and boundary conditions that remain
constant throughout the simulation. Thus, using potential velocity
eliminates the need to retrain the NN every iteration (unlike the actual
velocity field) in the training loop while also facilitating the conver-
gence of the prediction loop.

Another possible alternative is to use boundary conditions solely
as input to the NN since they generally remain constant throughout

scitation.org/journal/phf

the simulation. The problem with using boundary conditions is the
input to NN lacks information about the internal domain. The learn-
ing algorithm can use this information about the interior to identify
any underlying relationships, facilitating its training. Therefore, using
only boundary conditions as input can make training difficult because
the NN has to learn to associate the boundary values with the intricate
flow and geometric features that affect v,. On the contrary, the poten-
tial velocity field, which represents approximate flow features across
the domain, also encapsulates the geometric information about the
domain.

A. Backward-facing step

For testing algorithm 2, an NN is trained to predict v, for flow
over a backward-facing step. The details of implementation for the
backward-facing step are derived from the NASA turbulence data-
base.” Figure 7 shows a schematic of the domain; H= 0.0127 m is the
height of the step. The total height of the domain is set as 9H. The
boundary conditions for velocity are no-slip at walls and zero gra-
dients at the outlet. For pressure, a zero gradient is used at the inlet
and walls, with a fixed value of zero at the outlet. The v, is constrained
using the Spalding wall function at the walls. The viscous terms use a
central difference scheme for discretization, and the advective terms
use the linear-upwind stabilized transport discretization scheme. The
loss function provides the freedom to choose any discretization
scheme from multiple possibilities available in the OpenFOAM suite.

For validating the NN solver, the results (Re =36 000) from NN
solver are compared with the corresponding benchmark CFD solver
and NASA database (CFL3D-SA).” Figure 8 compares the coefficient
of pressure (C,), skin friction coefficient (Cy), and velocity (u,/Us).
Here, u, is the x-component of the velocity, and Uy, is the inlet veloc-
ity. C, and Csare plotted along the bottom wall starting downstream
of the step (x =0 in Fig. 7), and u, /U is plotted at the probe location
(P, in Fig. 7) for n=1, 4, and 10. From the Cr plot in Fig. 8, the
reattachment length (R)) is 6.1H for NN and CFD solver and NASA
database (CFL3D-SA).”® Additionally, the results for both NN and
CFD-solver agree well with the CFD3D-SA for each of C,, Cs and
uy/Us. However, the current CFD and NN solvers have a slight
difference in C; (downstream the reattachment point) compared with
CFL3D results. This difference is due to the use of a wall function in
the present study as opposed to CFL3D.”” The resulting accuracy from
current mesh and solver settings is acceptable as both NN and CFD
solvers produce similar trends to the benchmark CFL3D case. To reit-
erate, upto this point, the NN solver is used to solve flow for single Re;
therefore, the NN does not have any prediction capability for arbitrary
Re. The NN is trained for prediction at unseen Re for the backward-
facing step in Sec. V A 1.

The NN here is a five-layered, fully connected network. Each of
the three hidden layers has ten neurons with tanh as an activation
function. The input and output layer scale with the mesh and have
3600 neurons each. The mesh size was selected by performing grid
independence studies up to a size of 25000 cells. The grid is designed
for y+ ~ 30 because of the wall function, significantly reducing the
required grid size. The total number of trainable parameters in the NN
is 75830. As explained in the Sec. II A, the focus of the present study is
on the loss functions. Therefore, no NN optimization study was
performed.

Phys. Fluids 34, 077111 (2022); doi: 10.1063/5.0097480
Published under an exclusive license by AIP Publishing

34,077111-10

https://scitation.org/journal/phf

Wall |

Physics of Fluids ARTICLE

X=nxH

scitation.org/journal/phf

Probe (P,) atx/H=n

Inlet

Step height (H) = 0.0127m

Outlet

Wall

Missing patches
of training data

FIG. 7. Schematic of the backward-facing step. Here, H is 0.0127 m, and dotted line representing given by P, is used as probe locations for plotting velocity and v data at
location x/H = n. The dotted red patches show the missing data at each data point of the training dataset for validating hybrid training.

The number of epochs reduced linearly with the number of
SIMPLE iterations; that is, at the start of the training, 300 epochs were
used, which were reduced by five at every tenth SIMPLE iteration
before settling to a minimum number of 20. The initial learning rate
for nth SIMPLE iteration is given by (1 x 107%)/(1.2 x (n—1));
that is, at the start of the first SIMPLE loop, the learning rate was
1 x 1072, which reduced to 8.3 x 107 at the start of the second
SIMPLE iteration. In addition to reducing the learning rate globally at
the start of each SIMPLE loop, the learning rate was reduced locally as
well with the passing of epochs. Here, the local learning rate was
reduced by a factor of four after every 30% of the corresponding num-
ber of epochs passed.

1. Training NNs for prediction of v,

The NN is trained using both hybrid [Eq. (7)] and fully unsuper-
vised [Eq. (5)] loss functions. In hybrid learning, each instance of the
training dataset has some random patch missing from the v, field, as
shown in Fig. 7 (dotted red patches). Four different training data sets,

each missing a varying percentage of training data (v,) across the solu-
tion domain, were used to test the hybrid learning methodology. The
missing data comprised 20%, 40%, 50%, and 70% of the solution
domain for every v, field in training data.

The algorithm 2 is run in a batch-based mode (batch size 5) to
training the NN. Motivated from the work of Maulik et al,,’ the train-
ing is done at five Res equally spaced between Re 30000 and 36 000.
Figure 9 shows the comparison of maximum loss value vs the number
of training iterations (SIMPLE iterations) for hybrid and fully unsu-
pervised learning. In addition, Table I outlines the training speedups
corresponding to each training dataset. For instance, in the case of a
dataset with 20% of data missing, the hybrid loss function reaches the
loss threshold of 4.47 x 1077 in 374 training iterations, approximately
five times faster than the 1886 iterations for fully unsupervised learn-
ing. The speedup is due to the ability of hybrid loss functions to extract
information from partially available data and patch it with physics-
based training, which is targeted only at the locations that are missing
the data. Intuitively, the speedups diminish as the percentage of miss-
ing data is increased. However, even in the case with 70% of the

Pressure coeff. Skin friction coeff. Velocity
0.00 1073 8
-0.05 e NN-Solver
_4 6] CFD-Solver
-0.10 KO | ¢ xH=1
B4l 0 xH=4
-0.15 e x/H=10
10-5 CFL3D(x/H=10)
-0.20 e NN-Solver e NN-Solver 2
—— CFD-Solver —— CFD-Solver
—0.25 = CFL3D-SA = CFL3D-SA 0
0 10 20 0 10 20 0.0 0.5 1.0
x/H x/H Ux/Uo

FIG. 8. Comparison of results from NN solver with CFD solver for C,, C; and u/Ucc at Re = 36 000. For Crand C,, the values are plotted along the bottom wall downstream
of the step, while u/U., is plotted at probe P, (Fig. 7) at x=n x H, n € {1, 4, 6}. The benchmark solution for the case can be also found in NASA turbulence repository for

Spalart-Allmaras model (CFL3D-SA).”

Phys. Fluids 34, 077111 (2022); doi: 10.1063/5.0097480
Published under an exclusive license by AIP Publishing

34, 077111-11

https://scitation.org/journal/phf

Physics of Fluids

10° —— Unsupervised Training
—— 20% Data Missing
107! —— 40% Data Missing
—— 50% Data Missing
1072 70% Data Missing
@ 1073
S
1074
107
10-°
4.47 x 1077 . -
0 374 625 1028 1276 1886
lterations

FIG. 9. Comparison of hybrid and fully unsupervised/data-free training in terms of
mean absolute loss vs training iterations (SIMPLE). For all the cases, the hybrid
approach successfully built upon the partially available data and trained every NN
to an error threshold of 4.47 x 1077 in lesser iterations compared with fully unsu-
pervised learning (1886 iterations). However, speedups diminish as the percentage
of missing data increases. Supervised learning cannot be applied here due to miss-
ing data.

domain having information missing, the hybrid loss function extracted
marginally available data and leveraged it to provide a speedup of 1.5
times compared with unsupervised learning.

Nevertheless, hybrid learning should be viewed only as a particu-
lar case, not as an alternative to unsupervised learning. Data-free
learning has its advantages, a major one being complete independence
from the training data.

2. Validation of v; prediction accuracy of trained NN

In this section, the prediction accuracy of the trained NN is vali-
dated against the CFD solver. It was observed that the predicted v,
from NNs trained from data-free and hybrid approaches were mutu-
ally in close agreement due to being trained up to similar loss thresh-
olds. Hence for brevity, only the prediction from the NN trained via a
data-free method is compared with the benchmark CFD solutions.
Figure 10 compares the v, profiles for NN prediction with those calcu-
lated using the PBiCG solver at Re 33 900. For further analysis, Figs. 11
and 12 compare NN prediction with CFD solver for v, and u/Uy,

TABLE 1. Training speed for hybrid learning vs fully unsupervised learning to reach
training error (mean absolute error) of 4.47 x 107",

Percentage of data

missing at each data Training iterations Training speedup

point over entire to reach MAE of vs unsupervised
dataset 4.47 x 1077 learning
20% 374 5.04

40% 625 3.01

50% 1028 1.83

70% 1276 1.47

Fully unsupervised 1886 NA

ARTICLE scitation.org/journal/phf

6.6e-03
CFD Solver ': 0.006
— 0.004
— 0.003
NN Solver
— 0.002
[0.001
1.3e-09

FIG. 10. Comparison of v contours at Re 33900 for flow over a backward-facing
step solved by CFD solver (PBiCG) and predicted by NN solver, respectively.

respectively, along the probe P, located at n =1 and six downstream
of the step. The maximum deviation between the calculated and pre-
dicted values is under 1%. The L-2 error norm between predicted and
calculated values of v, at each Re is less than 3.52 x 107%. The same at
the boundaries is less than 3.79 x 1078,

It should be noted that NN inputs and outputs used in this study
are simplistic and suitable for validating physics-based learning in the
present context due to the high accuracy obtained in current applica-
tions. However, large gradients can render NN training difficult and
inaccurate for high Reynolds number flows.'””*”” Therefore, for
highly specialized applications (high Re), the current approach must
be integrated with specialized techniques such as reduced order
modeling,8 zone-based,”® and feature-based' "’ learning to facilitate
and accelerate the NN training. Here, an additional analysis of
application-specific feature selection needs to be performed and cou-
pled with the presented learning methodology. In this case, the
feature-based training can help improve the accuracy of the NN with a
reduction in the number of input features” and improving
generalization.'’

3. Solution speed for the NN approach

The proposed approach provides significant speedups (up to 6.8
times) in the solution times as compared to the conventional method
using the PBiCG solver. The overall speedups for reaching the solution
are shown in Table IL. It should be noted that for determining solution
times, the time taken to obtain the potential flow solution has also
been taken into account.

The observed speedups have been previously attributed to the
ability to use larger relaxation factors for pressure («,) and velocity
(o,,) in the case with predicted v, as compared to the ones used in the
case where turbulence closure PDE needs to solved.”” An analysis
independent of relaxation factors was performed to gain further
insight into observed speedups.

Both solution methodologies (CFD and NN solver) were
employed with identical relaxation factors, namely, 0.7 for pressure
and 0.9 for momentum equation. The relaxation factor (,,) used for
solving turbulence closure (SA model) was selected as 0.35. Figure 13
shows the residuals of the velocity and pressure at Re 33 900 for given
values of o, Ulpy and a,,. It can be seen that using the same relaxation
factors, the residuals for the NN solver are decreasing at a higher rate,
that is, converging in fewer iterations. Thus, it can be concluded that
other effects help accelerate the solution, in addition to (larger) relaxa-
tion factors and obviating the computational effort associated with the

Phys. Fluids 34, 077111 (2022); doi: 10.1063/5.0097480
Published under an exclusive license by AIP Publishing

34, 077111-12

https://scitation.org/journal/phf

Physics of Fluids ARTICLE scitation.org/journal/phf
Re 30900 Re 32100 Re 33900 Re 35100
9 9 9 9
6 6 6 6
<
>
3 3 3 3
0{s : 0 : 01 : 01)
0 9 0 2 0 2 2
le-3 le-3 le-3 le-3
9 9 9 9
6 6 6 6
T —— NN Solver
S | A I N N A B § SRR CFD Solver
3 3 3 3
0 0 0 0
00 25 50 00 25 50 00 25 50 00 25 50
Ve le-3 Ve le-3 Ve le-3 Ve le-3

FIG. 11. Line plots comparing the values of v at Re 30 900, 32 100, 33 900, and 35 100 for NN solver (red) vs CFD solver (black, PBiCG). The first row shows the v, at probe

Py (Fig. 7), that is, x = H; second row plots the values at Pg (Fig. 7) corresponding to x = 6H downstream of the step.

FIG. 12. Line plots comparing the values of u/Us, at Re 30900, 32 100, 33900, and 35 100 for NN solver (red) vs CFD solver (black, PBiCG). The first row shows the u/U..

Re 30900 Re 32100 Re 33900 Re 35100
0.0 0.5 10 00 05 1.0 00 0.5 10 00 0.5 1.0
—— NN Solver
CFD Solver
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
u/U. u/U. u/U, u/U,

at probe P4; second row plots the values at Pg (Fig. 7).

Phys. Fluids 34, 077111 (2022); doi: 10.1063/5.0097480
Published under an exclusive license by AIP Publishing

34,077111-13

https://scitation.org/journal/phf

Physics of Fluids ARTICLE

TABLE II. Comparison of overall solution times for neural network-based solver with
a PBICG solver for turbulent eddy viscosity () in a SIMPLE loop. All calculations
are done with serial execution on an Intel Xeon(R) E5520 with a clock speed of
2.26 GHz.

Solution time (s)

Re Neural network PbiCG Speedup ratio
30900 2.77 18.68 6.74
32100 2.78 18.85 6.78
33900 2.76 19.02 6.89
35100 2.82 18.72 6.63

solution of the SA model. However, a comprehensive analysis, consid-
ered beyond the scope of this study, is needed to fully understand the
complex interaction between the predicted v, and pressure and veloc-
ity solvers. Also, a scaling analysis of problem size vs speedup would
provide further insight into the convergence mechanics of NN solver.

It should be noted that other methods can also speed up the solu-
tion, such as the use of multi-grid solvers or preconditioners.
However, the NN approach here is not presented as a substitute but
rather as an enhancement to those methods. The current approach
can be used to further augment the speedups for any of the methods
above. Additionally, for high Re flows, the current input and output of
the NNs can affect the speedups. Therefore, specialized techniques
such as reduced order modeling,” zone, and feature-based NNs'****
can be used with the current methodology to take into account the
effect of large gradients and optimally scale the speedups for high Re
flows.

VI. CONVECTIVE HEAT TRANSFER

This section uses an NN to predict the temperature for a steady-
state convective heat transfer problem. The loss function, in this case,
is the constant-property energy equation given as

10°

1071

Residual

= = =
=) 5] (=
L & A

,_.
1S)
b

._.
o
&

=
o
4

0 200 400 600 800
Iteration

1000 1200 1400 1600

FIG. 13. Residual plots for NN-based vs conventional solver for comparing conver-
gence speed at Re 33900. Residuals for the NN-based solver decay at a faster
rate (6.89 times) than conventional solvers using the same relaxation factors.

scitation.org/journal/phf

ALGORITHM 3: Modified SIMPLE algorithm to train an NN for a convective heat
transfer problem.

1: Calculate the potential velocity field (u”) for the given boundary
conditions.

2: Solve for u and p using SIMPLE algorithm.

: if Training NN then

4: Discretize the given heat transfer model to be posed as
physics-based loss function. For this study it is Eq. (10).

5: Predict the temperature from NN, with potential velocity (u”)
as an input and substitute it to loss function to obtain the
deviation at each grid point.

6: Feedback the NN with the loss values for training.

7: if Prediction from trained NN then

8: Predict the temperature from NN, with potential velocity as
an input.

9: if Additional effects of temperature are present then

10: Before next iteration, solve for effect of temperature on flow
parameters such as viscosity and pressure.
11: Go to step 2 until convergence.

[S¥]

V- (uT) = aV>T, (10)

where T is the temperature field, and o is thermal diffusivity. In Eq.
(10), pressure work, Dufour effects, and viscous dissipation are all
neglected. As shown in algorithm 3, in the training loop, the NN is
used to predict the temperature field, which is subsequently fed to the
loss formulation to provide the residual information for training the
NN. For the prediction loop, a trained NN is used to predict the tem-
perature field, T for the given flow conditions by using the potential
velocity field as an input to NN.

A. Flow across a heated cylinder

The NN-based solver is used to compute the temperature distri-
bution around a heated square cylinder placed in a fluid flow (Fig. 14).
The flow is steady and confined, with a blockage ratio of seven. The
domain measures 20H and 7H in stream-wise x and cross-wise y
directions. The center of the cylinder is located at a distance of 5.5H

| 20H

HZ

FIG. 14. Schematic of the domain for fluid flow and heat transfer around a heated
square cylinder. Here, H=0.05 m. The dotted red patches showing the missing
data patches for supervised training at each data point of the training dataset. The
centerline, P1, is used as a location for plotting temperature data.

Phys. Fluids 34, 077111 (2022); doi: 10.1063/5.0097480
Published under an exclusive license by AIP Publishing

34, 077111-14

https://scitation.org/journal/phf

Physics of Fluids ARTICLE

—— Unsupervised Training
—— Hybrid Training
107!
173
(e}
-
1072
M‘a‘m
6.7x 107 e
0 60 120 181 240 300 360 400
Epochs

FIG. 15. Comparison between hybrid and fully unsupervised training in terms of
mean absolute loss/error value as a function of training epochs. The hybrid loss
functions reach the loss value of 6.7 x 107> in 181 epochs which is 2.2 times
faster than corresponding 400 epochs of fully unsupervised learning.

from the inlet. Here, H=0.05 m is the length of one side of the
square.

Similar to Sec. V A, the proposed framework is validated for
training the NN using both hybrid and fully unsupervised loss func-
tions. As shown in Fig. 14 (dotted red patches), here also, each data
point of the training dataset has some random patch of temperature
field missing. The velocity boundary conditions are no-slip along with
the cylinder and outer walls. The cylinder surface temperature is
350 K, while the walls and inlet fluid are at 300 K. The Prandtl number,
in this case, is 1.1. As described earlier, the input to the NN is a poten-
tial velocity field.

1. Training NNs for temperature prediction

Figure 15 shows a plot comparing the normalized maximum loss
value (across the domain) for hybrid and fully unsupervised learning
methodologies. The missing instances in each training data point com-
prised 30% of the solution domain. Algorithm 3 is run for a batch of
five Re for training, namely, 10, 20, 30, 40, and 50. The NN, in this
case, has five layers with three hidden layers of ten neurons. The acti-
vation function used is tanh. The input and output layers have a size
of 3770, each making total trainable parameters 79400. The initial

CFD Solver

L)

scitation.org/journal/phf

learning rate is 1 x 107> and decreases by a factor of 1.2 after every
ten epochs. As mentioned above, NN in this study are not subjected
to any optimization as the focus here was on loss functions. Both fully
physics-based and hybrid losses train NNs for 400 epochs using simi-
lar hyper-parameters. The hybrid strategy trains NN faster (i.e., lower
loss value) for the given number of iterations. As shown in Fig. 15, the
accuracy reached by fully supervised learning in 400 iterations is
achieved by hybrid learning in 181 epochs; that is, a training speedup
factor of 2.2 is achieved by hybrid learning.

2. Predicting temperature using trained NN

The solutions are predicted for steady-state flow at Re of 35 and
45. Similar to Sec. V A, the predictions of NN trained using hybrid
and fully unsupervised loss functions were in close agreement. The fol-
lowing results are only for the NN that was trained by using the hybrid
loss function. Figure 16 shows the comparison of non-dimensional
temperature (T*) contours from the NN and CFD solver at Re of 35.
Here, T* is given as

T — Tmin

TH= "
Tmax - Tmin

(am
where T is predicted temperature, T,,,, = 350K (cylinder surface),
and T,,;, = 300K (inlet fluid). Figure 17 provides further insight into
prediction accuracy by plotting comparisons of the predicted and cal-
culated (PBiCG solver) temperature along the centerline of the domain
(P1 in Fig. 14) at Re of 35 and 45. The NN predicted results match
well with those of the calculated solution. The deviation observed
between the predicted and calculated results is less than 1.82%. The
L2-norm error for the entire domain averaged for both predicted Re is
0.006 31.

It should be noted that the flow model considered in this case
assumes that there is no impact of the temperature field on the varia-
bles such as viscosity. However, suppose such an effect was present,
additional equations outlining said effects must be solved to resolve
the flow field accurately. The modularity resulting from integrating
NNs and CFD algorithms allows for additional equations to be solved
simultaneously, with current equations as shown in Sec. V1I.

VII. SIMULTANEOUS SOLUTION OF POISSON
(PRESSURE) AND ENERGY EQUATION

As mentioned in Sec. VI, the modular nature of the present
approach can be used to solve multiple equations simultaneously. In
this section, multiple steps of the SIMPLE algorithm are replaced with

[1 .0e+00
0.8
—0.7
—0.6
—0.5

—0.4
—0.3

[0.2
0.0e+00

NN Solver

L

FIG. 16. Comparison of temperature [T*, Eq. (11)] contours for the flow around a heated cylinder at Re 35. Left: Calculated using CFD solver (PBiCG), Right: Predicted using
NN.

Phys. Fluids 34, 077111 (2022); doi: 10.1063/5.0097480
Published under an exclusive license by AIP Publishing

34, 077111-15

https://scitation.org/journal/phf

Physics of Fluids ARTICLE

Re 35

1.00
0.75
'~ 0.50
0.25

0.00 M*J, : . , ,

0 5 10 15 20

x/H

scitation.org/journal/phf

Re 45

100 —— NN Solver
o775 41 CFD Solver
0.50

0.25

0.00{ ——— , , ,

0 5 10 15 20
x/H

FIG. 17. Centerline plots for temperature (T*) predicted by NN solver (red) and that of CFD solver (black, PBICG) along the line P1 in Fig. 14. Here, T* is obtained using Eq. (11).

NNs. Hence, all the corresponding governing equations must be
simultaneously posed as loss functions. Here, the NNs replace the
pressure and temperature calculation steps; that is, Poisson and energy
equations are posed as loss functions. Similar to the lid-driven cavity
case, the NNs here are only used as solvers to quantify the accuracy of
the NN-based solution for pressure and temperature.

The case considered is steady laminar flow over a 3D backward-
facing step. The computational domain has length, breadth, and height
of 12H, 2H, and 2H, respectively. The entrance region has a length of
2H, where H=0.1 m is the step height. The lower surface of the
entrance region is at 350 K, with the entering fluid and remaining sur-
faces at 300 K. The Prandtl number, in this case, is 1.1. The NNs for
pressure and temperature solution have architecture and hyper-
parameters similar to the one used in Sec. V A. The total trainable
parameters for NNs, in this case, are 98 930, with 4700 nodes in input
and output layers. Solutions are obtained at Re of 40, 50, and 70 using
the potential velocity field input to the NN. Figure 18 shows the mean
absolute loss vs iterations for the NN solver.

Figure 19 shows a comparison of the velocity (u/Uy,), pressure
field (P/pU2,), and temperature [T*, Eq. (11), Typax = 350 K and T,,,;,
= 300K] profiles obtained from CFD and NN-based solvers at
Re=70. Here, u is the velocity magnitude, P corresponds to pressure,

100

0 50 100 150 200
Iterations

FIG. 18. Mean absolute loss vs iterations for NN solver for convective heat transfer
in a backward-facing step.

and Uy is inlet velocity. From the streamline plots in Figs. 19(g) and
19(h), the NN solver can resolve the primary re-circulation zone cor-
rectly. For further evaluation, temperature, pressure, and velocity
results for NN solver vs CFD solver are compared in Figs. 20 and 21
along the centerlines shown as P1 and P2 in Figs. 19(a) and 19(c).
Also, the reattachment lengths of NN-based solutions are within 0.3%
of the calculated results. The averaged L-2 error norm for all Re is
4.8 x 107 for pressure and 0.007 91 for temperature.

VIII. DISCUSSION AND KEY CONTRIBUTIONS
A. Flow-specific discretization

The discretized loss functions presented in this study allow for
flow-specific discretization, which is similar to conventional CFD
applications. The specificity of loss functions is realized by using the
different discretization schemes for the presented flow problems. The
lid-driven cavity used a central difference scheme, while the backward-
facing flow used linear upwind stabilized transport to discretize advec-
tive terms. Hence, the framework provides the freedom to perform
any flow-specific modification to loss functions based on CFD know-
how. However, discretization schemes applied in this study are not
claimed to be ideal for the corresponding flows. The focus here was to
demonstrate the flexibility of using any discretization scheme from
multiple options available in the OpenFOAM library.

B. Hybrid loss functions

Hybrid loss functions presented in this study combine the ele-
ments of supervised and unsupervised learning for training the NNs in
situations where the data presented are partially available. As shown in
the lid-driven cavity flow, the hybrid loss functions can extract the
available information such as primary vortices from the partial obser-
vations and patch it with a physics-based loss function to generate sec-
ondary vortices (missing in the data provided). In addition, the
training of NN from partial observations is demonstrated for
backward-facing step and flow around a heated cylinder. The hybrid
loss function proved advantageous by expediting the training com-
pared to data-free learning. The accelerated training is attributed to
the ability of hybrid learning to build upon the previous effort to gen-
erate data. These data are discarded in conventional supervised learn-
ing, wasting the resources invested to generate it.

Though the hybrid loss functions are proposed for both experi-
mental and CFD training data, only the cases in the context of CFD

Phys. Fluids 34, 077111 (2022); doi: 10.1063/5.0097480
Published under an exclusive license by AIP Publishing

34,077111-16

https://scitation.org/journal/phf

Physics of Fluids ARTICLE

CFD Solver

scitation.org/journal/phf

NN Solver
b.

1.4e+00
I: 1.2
— 1
— 0.8
— 0.6
—04

0.2
0.0e+00

5.7e-01
I:O.S
—04

—03
= 0.2
— 0.1

0
-7.3e-02

1.0e+00
I..
— 0.7
— 0.6
— 05
— 04

— 03

[0.2
h. 0.0e+00

FIG. 19. Comparison between [(a) and (b)]. Velocity (u/U) [(c) and (d)]. Pressure (P/pU?) [(e) and (f)]. Temperature (T*) [(g) and (h)]. Streamlines for the CFD and NN
solvers along the center plane of the domain at Re 70. Here, u is the velocity magnitude, P corresponds to pressure, Uy, is inlet velocity, and T* is obtained using Eq. (11)
with T 300 (fluid) and .y 350 (bottom wall of inlet zone). N.B.: The dotted lines P1 and P2 in a and ¢ represent the locations used for line plots in Figs. 20 and 21.

data are validated. However, the same methodology can be used to
train an NN from experimental data by adjusting the location of grid
points of the data-driven part of the hybrid loss function to align with
the probe locations for which the data are available across the domain.
By contrast, the rest of the grid points can utilize the physics-based
part to train the NN where the experimental data are unavailable.

C. Generalizability

The discretized nature of loss functions aids in easy integration
into CFD packages. The versatility offered by the resulting CFD-ML
platform is validated in this study by solving a variety of problems
involving laminar flow (lid-driven cavity), RANS turbulent closure
model (backward-facing step), and heat transfer (flow around heated
cylinder and backward-facing step). The only modification for each
flow was posing a different governing equation as a loss function. An
alternative to these CFD-ML integrated platforms would be a stand-
alone ML framework such as TensorFlow, where one has to code the
flow problems and any corresponding flow changes from scratch.
Instead, in the present TensorFlow-OpenFOAM framework,
OpenFOAM libraries handled changes in geometries, boundary condi-
tions, and discretization schemes circumventing programing
bottleneck(s).

The focus of this study was to propose and integrate physics-
based deep learning into CED. Therefore, for the simplicity of NN
architecture, the present research only used steady-state flow problems
to validate the proposed methodology. Unsteady flow problems
require special NN architectures such as LSTMs (long short-term
memory neural networks) to resolve flow variables. The future work
will focus on unsteady flow problems aligning with the work of Pant
et al” and use LSTMs for implementing physics-based learning into
unsteady flows.

IX. CONCLUSIONS

The present study formulates generalized unsupervised learning
as an alternative or an augmentation to supervised learning. As an
alternative, unsupervised learning is solely realized through physics-
informed loss functions, which require no data to train an NN. As an
augmentation, the physics-informed loss functions are hybridized with
data-driven loss functions to train an NN from partial or sparse obser-
vations that cannot be used with purely data-driven training. In
addition, the SIMPLE algorithm is modified to accommodate the
physics-based NN training by applying feedback loops at various
solution steps.

Phys. Fluids 34, 077111 (2022); doi: 10.1063/5.0097480
Published under an exclusive license by AIP Publishing

34, 07711117

https://scitation.org/journal/phf

Physics of Fluids ARTICLE

scitation.org/journal/phf

Re 50 Re 70
1.2 Py 1:2 N 1.2 .
,‘ \- ‘ll \\ 1‘ .\.
38 10 ’\ f" . "”-‘“.: 1.0 "‘ "’ hl N 1.0 '\ /.I ““No
3 \ 1) ‘ \ !
S i g v/ N
0.8 ! ,‘ 0.8 \\ ‘l 0.8 X }Il
‘-_" _" '\.,
0 5 10 0 5 10 0 5 10
% i 0.501%
N y 05] & 4
D B : "‘ ".
Q057 4 1 0251 }
E \\‘ '\\ \‘
\ r Aaady - TN \ Dlandn o'3 .'..H""*
0.0 W 0-‘.“ 0.0 \\.‘_'.l M.“.*.. 0.00 \‘.".’.A‘ .
0 5 10 0 5 10 0 5 10
% ~ -
¢ §o "‘ by [E CFD Solver
, 051 | ! os] i % 05/ { Y « NNSolver
~ l PN i
| w i ‘e H .,
A N P j .
0.0 Li resthie | 0,014 , OBRRERER |, (0 & MG
0 5 10 0 5 10 0 5 10
x/H x/H x/H

FIG. 20. Comparison between CFD and NN-based solution of velocity (u/Us.), pressure (P/pU?.), and temperature (T*) from Fig. 19(a) located along P1, the centerline of

the domain parallel to x axis and 0.1H above the base of the entrance region.

u/Us

0.150

2
©

P/pU

0.125

0.100

0.0

FIG. 21. Comparison between CFD and NN-based solution of velocity (u/U..), pressure (P/pU?), and temperature (T*) along probe location P2 in Fig. 19(c) located at the

Re 40
1
0
0 1 2
0.075
0.050
0 1. 2
0.4
0.2
0.0
0 1 2
y/H

Re 50

1
0

0 i | 2
0.00
-0.02
—-0.04

0 i ! 2
0.4
0.2
0.0

0 1 2

y/H

centerline of the domain parallel to y axis and at a distance H downstream of step.

Re 70

0

1

—=— NN Solver

CFD Solver

0 1 2
0 1 2
y/H

Phys. Fluids 34, 077111 (2022); doi: 10.1063/5.0097480
Published under an exclusive license by AIP Publishing

34,077111-18

https://scitation.org/journal/phf

Physics of Fluids ARTICLE

(1) The discretized nature allows the presented loss functions
to benefit from well-developed numerical schemes of CFD
to resolve different flow phenomena. Similar to conven-
tional CFD solvers, these loss functions have access to all
the numerical schemes of CFD (OpenFOAM). This access
enables training NN for any flow, which can be solved by
using numerical schemes available in OpenFOAM. Though
for demonstration, OpenFOAM is used here, and the pre-
sented loss functions can be used with any finite-volume-
based CFD solver.

(ii) The results predicted by NNs trained in this study agreed
well with those of numerical solvers. Also, the NN solver
provided significant speedups of approximately 6.7 times
for turbulence modeling. These speedups are encouraging.
However, a detailed analysis of the complex interactions
between the governing equations and solution variables,
together with a scalability analysis for high Re flows, needs
to be performed in future work to get more insight into uti-
lizing the speedups optimally. Though for simplicity, this
study trains NNs on Spalart-Allmaras model, and the
speedups obtained stimulate further exploration of models
such as k — e and k — w SST.

(iii) One significant benefit of discretized functions is compati-
bility with the CFD algorithms and solvers. The present
work uses this compatibility to create a general-purpose
unsupervised learning CFD-ML platform where different
flow problems can be studied by machine learning. The
unsupervised learning in TensorFlow is integrated with
OpenFOAM to form a CFD-ML test-bed. This test-bed
allows the freedom to switch between different flows and
geometries with relative ease circumventing the program-
ming bottleneck(s) of coding every detail on a stand-alone
TensorFlow application. NN trained in this study validate
this freedom on a comprehensive range of flow problems
involving Poisson-like/pressure equation, SA turbulence
closure model for RANS, and energy equation.

(iv) Another contribution of this study is the hybrid learning
approach, which formulates loss functions by combining
supervised learning with the a priori in the form of govern-
ing equation. This combination was validated for training
an NN from data missing multiple instances. These data
cannot be used with standard supervised learning algo-
rithms. The hybrid learning strategy recovered complex
flow features such as secondary vortices from locations of
missing data for the lid-driven cavity flow case. In addition,
the hybrid loss function extracted the information about
temperature and v, from the partially available data for flow
around a heated square and a backward-facing step, respec-
tively. The information extracted from the partially available
data helped train the NN five times faster than purely unsu-
pervised training.

The validation served as proof of concept and encouraged future
work with the experimental data, where hybrid learning can be more
apt due to the loss of data due to faulty probes. However, the govern-
ing equations used to recover the missing data in experiments can pre-
sent limitations on the recovered flow phenomena. For these
limitations, future work will utilize the concepts such as transfer

scitation.org/journal/phf

learning so that the hybrid learning recovering the data and training
the NN can also benefit from previous training runs on datasets of the
flows that resemble the flow under consideration.

The present methodology has been validated in the context of the
popular SIMPLE algorithm only. However, the presented training
methodologies can be integrated into other pressure-linked or numeri-
cal algorithms. In addition, the NN solvers presented in this study can
be used as surrogates to numerical solvers for any other partial differ-
ential equations. However, the inputs and outputs of the NNs have to
be adjusted based on the application. Since this study aims to validate
the unsupervised training and its accuracy, only steady-state flows
were used as test cases for simplicity. In future work, the present meth-
odology will be used with long short-term memory networks as surro-
gates for predicting the solutions to unsteady flow problems.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Deepinder Jot Singh Aulakh: Conceptualization (equal); Data cura-
tion (equal); Formal analysis (equal); Investigation (equal);
Methodology ~ (equal); Software (equal); Validation (equal);
Visualization (equal); Writing—original draft (equal); Writing—
review and editing (equal). Steven B. Beale: Funding acquisition
(equal); Investigation (equal); Methodology (equal); Project adminis-
tration (equal); Resources (equal); Supervision (equal); Writing—origi-
nal draft (equal); Writing—review and editing (equal). Jon G.
Pharoah: Conceptualization (equal); Data curation (equal); Funding
acquisition (equal); Investigation (equal); Methodology (equal);
Project administration (equal); Resources (equal); Software (equal);
Supervision (equal); Validation (equal); Visualization (equal).

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

APPENDIX A: SIMPLE ALGORITHM

The semi-implicit method for pressure-linked equations
(SIMPLE)" is a widely used CFD algorithm for iteratively solving
Navier-Stokes equations. At the start of a SIMPLE iteration (step
1), the velocity field (u) is obtained by solving the momentum equa-
tions. Here, the pressure gradient is calculated from the pressure
distribution (P°) from the previous iteration or an initial guess. A
Poisson’s pressure equation is solved for conservative pressure dis-
tribution (PP) in step 2. The velocity field (u) used to form the pres-
sure equation is obtained from the first step. The pressure field (PP)
obtained here is under-relaxed in step 3 to obtain P™" used to cal-
culate the conservative mass flux for correcting the velocity field in
step 4. The iterations are repeated until convergence. However, it
should be noted the SIMPLE algorithm presented here is based on
OpenFOAM. The original SIMPLE algorithm by Patankar and
Spalding”” calculates the pressure correction (P’) instead of directly
obtaining the pressure (PP).

Phys. Fluids 34, 077111 (2022); doi: 10.1063/5.0097480
Published under an exclusive license by AIP Publishing

34, 077111-19

https://scitation.org/journal/phf

Physics of Fluids

ALGORITHM 4: SIMPLE algorithm®” (simpleFOAM®®).

1: Obtain approximate velocity field (u) by solving momentum
equation. The pressure (P°') used in this step is either from the
previous iteration or an initial guess. The velocity here is not
divergence free.

2: Solve Poisson equation for pressure distribution (PP). This equa-
tion is formulated using the velocity field obtained in step 1.

3: A new set of conservative mass fluxes is calculated using pressure
P which is obtained by under relaxing the pressure using
prew — Pold + OCP(PP _ Pold).

4: Correct velocities using P,

For the applications presented in this study, in a SIMPLE loop,
the solution of momentum and pressure equations takes 47% and
53% of the total computation time, respectively. For momentum,
pressure, and energy equations in convective heat transfer, the dis-
tribution is 33%, 51%, and 16%, respectively. If turbulence is added,
the distribution is 30%, 50%, and 20% for momentum, pressure,
and eddy viscosity solution. However, the contribution of each
equation to the total solution time should not be viewed as the sole
indicator of speedup that can be achieved by coupling with NN.
The number of iterations to convergence is also equally important.
As seen from the backward-facing step, in addition to replacing the
solution of eddy viscosity, the NN prediction also reduced the num-
ber of iterations to reach convergence.

APPENDIX B: IMPLEMENTATION OF PROPOSED
LEARNING APPROACHES

1. Fully physics-based learning

Figure 22 shows the schematic implementation of fully
physics-based learning onto TensorFlow and OpenFOAM integra-
tion. The schematic is divided into two parts by a dotted line. The
top half of Fig. 22 corresponds to the TensorFlow implementation,
and the bottom half corresponds to OpenFOAM calculations.

ARTICLE scitation.org/journal/phf

The bottom half runs the SIMPLE algorithm and interacts
with the TensorFlow for training a NN surrogate. The loss function
for training the NN can be any governing equations present in the
SIMPLE loop. These governing equations were Poisson’s,
Spalart-Allmaras, and energy equations for this study. First, the dis-
cretization operators for governing equation of interest are
imported into TensorFlow. Here, the prediction y from an
untrained NN is fed into the discretization operators to calculate
the loss after linear operations such as adding/subtracting the dis-
cretized terms. The prediction y can also be referred to as the pro-
posed solution of the governing equation. For example, y will
correspond to the temperature if the energy equation is imported
into TensorFlow. Then, the calculated loss is backpropagated for
training the NN. Afterward, an improved prediction y” is fed back
into the OpenFOAM to be used in the subsequent calculation steps
of the SIMPLE algorithm. The details about feeding y” into SIMPLE
algorithm are outlined in algorithm 1, 2, and 3, where y” corre-
sponds to pressure, eddy viscosity, and temperature, respectively. It
should be noted that the schematic only shows the training corre-
sponding to one predicted field for simplicity. However, a batch of
fields is used to calculate the loss to realize the generalized training
for the NNs.

2. Hybrid learning

As explained in Sec. II B, the hybrid loss function combines
physics-based learning with the data-driven loss for training the
NN from partially available/sparse data. Figure 23(a) outlines the
schematics of the hybrid loss function and its integration into CFD.
Similar to fully physics-based loss, the schematic here is also divided
into TensorFlow and OpenFOAM sections. The integration of
TensorFlow with OpenFOAM remains identical to the fully
physics-based case. However, the TensorFlow part is modified to
accommodate the feedback from the available data and patch it
with the physics-based loss function. The schematic of the partially
available data is given by Fig. 23(b).

As shown in Fig. 23(a), the locations where data are available
are trained using the data-driven loss function. On the contrary, the

Feedback to
training algorithm

|:> Physics based loss

Linear operations

OpenFoam

Derivative/discretization

Next step in SIMPLE

SIMPLE iteration |:>
running operators of the governing eq. |:> loop

FIG. 22. Schematic implementation of fully physics-based loss onto consolidated ML-CFD platform. The dotted line separates the operations performed in TensorFlow from the
ones in OpenFOAM. The solution field y is predicted and improved by using the feedback from the discretized governing equation.

Phys. Fluids 34, 077111 (2022); doi: 10.1063/5.0097480
Published under an exclusive license by AIP Publishing

34,077111-20

https://scitation.org/journal/phf

Physics of Fluids

.S.

ARTICLE scitation.org/journal/phf

Feedback <:|

Supervised U Physics loss
Supervised loss

Supervised loss

1Y = Yavair.|

Linear operations Physics-based loss

—>
—=>

SIMPLE iteration
running

—>)

operators of the governing eq.

Derivative/discretization

Next step in SIMPLE
loop

7 ’
yavail Yunavailable

Training data

FIG. 23. Schematic implementation of hybrid learning methodology. (a) Shows the implementation details of the hybrid loss function. Here, the data-driven and physics-based
losses are combined to form the feedback for the training algorithm. (b) The simplified representation of the partially available data.

parts where no labeled data are available are trained using a
physics-based loss function. Before feeding into the training algo-
rithm, both the physics and data-driven losses are combined to cre-
ate feedback for the entire domain. Similar to Appendix B 1, batch-
based loss is also required to infuse generalizability into the NN
training.

APPENDIX C: LOSS EVALUATION FOR PRESSURE
EQUATION AND COMPARISON TO PINNS

Figure 24 compares the loss evolution of fully physics-based
and hybrid loss functions. The fully physics-based loss function
converges in 35 training iterations compared to 133 of hybrid loss.
In contrast to the turbulence closure and energy equation, the
hybrid loss function converges in significantly more iterations than
fully physics-based loss.

Further analysis revealed the reason behind this exception as
flux imbalance and divergent non-linearity in momentum equation.
The non-linearity results from the multiplication of flux with the
velocity. In the case of fully physics-based loss, at every iteration of
the SIMPLE algorithm, the velocity field (maybe un-converged)
obtained from the momentum equation is corrected by the corre-
sponding pressure field (un-converged). Subsequently, the said
pressure and velocity field are used to calculate the flux, which con-
serves mass. The pressure and velocity fields mentioned above,
though un-converged, are mutually compatible for getting mass
conservation. This convergent mass flux is responsible for obtaining
a more accurate (compared to the previous iteration) velocity field
in the next iteration by solving the momentum equation. However,
the partially available pressure for hybrid learning is inconsistent

with the corresponding velocity fields at each iteration. Therefore,
the resulting flux is not mass conserving, which delays the conver-
gence for the hybrid loss function. This flux imbalance also explains
the wavy nature of the hybrid loss in Fig. 24. This fact is further
proved by an additional analysis in which the converged flux is
used along with partially available pressure in a SIMPLE loop. The
hybrid loss function, in this case, converged in 25 iterations, as
shown in Fig. 24. From here, it was concluded that for Poisson’s
equation, both partial pressure and flux must be available for the
hybrid loss function to accelerate convergence. However, to train a

0
10 —— Physics-based loss
—— Hybrid learning
10-2 —— Flux known hybrid
&
210
10-°

0 25 35 50 75 100

Iterations

133

FIG. 24. Mean squared loss vs iterations. Compared with fully physics-based, the
hybrid loss has delayed convergence due to non-linearly divergent flux. However, if
flux is conservative and known, the hybrid loss function converges faster in 25 itera-
tions than in 35 for fully physics-based learning.

Phys. Fluids 34, 077111 (2022); doi: 10.1063/5.0097480
Published under an exclusive license by AIP Publishing

34, 077111-21

https://scitation.org/journal/phf

Physics of Fluids

NN to predict flux is still an open question as pressure and flux vec-
tors are of different sizes.

Furthermore, this analysis also provides a reason for acceler-
ated convergence in turbulence modeling by the hybrid loss func-
tions. The reason is that eddy viscosity does not create any
divergent non-linearity as it algebraically adds to the fluid viscosity.
Therefore, the partially available information in turbulence can
accelerate the convergence. The same is true for the energy equation
as well.

REFERENCES

M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural net-
works: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations,” J. Comput. Phys. 378,
686-707 (2019).

2X_ Jin, S. Cai, H. Li, and G. E. Karniadakis, “NSFnets (Navier-Stokes flow nets):
Physics-informed neural networks for the incompressible Navier-Stokes equa-
tions,”]. Comput. Phys. 426, 109951 (2021).

3P. Garnier, J. Viquerat, J. Rabault, A. Larcher, A. Kuhnle, and E. Hachem, “A
review on deep reinforcement learning for fluid mechanics,” Comput. Fluids
225, 104973 (2021).

“]. Rabault and A. Kuhnle, “Accelerating deep reinforcement learning strategies
of flow control through a multi-environment approach,” Phys. Fluids 31,
094105 (2019).

SH. Ghraieb, J. Viquerat, A. Larcher, P. Meliga, and E. Hachem, “Single-step
deep reinforcement learning for open-loop control of laminar and turbulent
flows,” Phys. Rev. Fluids 6, 053902 (2021).

©S. Pawar, S. E. Ahmed, O. San, and A. Rasheed, “Data-driven recovery of hid-
den physics in reduced order modeling of fluid flows,” Phys. Fluids 32, 036602
(2020).

7P. Pant, R. Doshi, P. Bahl, and A. Barati Farimani, “Deep learning for reduced
order modelling and efficient temporal evolution of fluid simulations,” Phys.
Fluids 33, 107101 (2021).

85, A. Renganathan, R. Maulik, and V. Rao, “Machine learning for nonintrusive
model order reduction of the parametric inviscid transonic flow past an air-
foil,” Phys. Fluids 32, 047110 (2020).

%R. Gupta and R. Jaiman, “Three-dimensional deep learning-based reduced
order model for unsteady flow dynamics with variable Reynolds number,”
Phys. Fluids 34, 033612 (2022).

TOL. Zhu, W. Zhang, and G. Tu, “Generalization enhancement of artificial neural
network for turbulence closure by feature selection,” Adv. Aerodyn. 4, 1-24
(2022).

M. Milano and P. Koumoutsakos, “Neural network modeling for near wall tur-
bulent flow,” J. Comput. Phys. 182, 1-26 (2002).

2. Patil, J. Viquerat, A. Larcher, G. E. Haber, and E. Hachem, “Robust deep
learning for emulating turbulent viscosities,” Phys. Fluids 33, 105118 (2021).

3. Ma, K. Lin, D. Fan, J. Wang, and M. S. Triantafyllou, “Flexible cylinder flow-
induced vibration,” Phys. Fluids 34, 011302 (2022).

T%R. Gupta and R. Jaiman, “A hybrid partitioned deep learning methodology for
moving interface and fluid-structure interaction,” Comput. Fluids 233, 105239
(2022).

15]. Viquerat, J. Rabault, A. Kuhnle, H. Ghraieb, A. Larcher, and E. Hachem,
“Direct shape optimization through deep reinforcement learning,” J. Comput.
Phys. 428, 110080 (2021).

'8F.-]. Granados-Ortiz and J. Ortega-Casanova, “Machine learning-aided design
optimization of a mechanical micromixer,” Phys. Fluids 33, 063604 (2021).

7Y. Wang, J. Joseph, T. A. Unni, S. Yamakawa, A. Barati Farimani, and K.
Shimada, “Three-dimensional ship hull encoding and optimization via deep
neural networks,” J. Mech. Des. 144, 101701 (2022).

BA. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind, “Automatic differ-
entiation in machine learning: A survey,” J. Mach. Learn. Res. 18, 1-43 (2018).

V. Dwivedi, N. Parashar, and B. Srinivasan, “Distributed physics informed
neural network for data-efficient solution to partial differential equations,”
arXiv:1907.08967 (2019).

ARTICLE scitation.org/journal/phf

20A. D. Jagtap, E. Kharazmi, and G. E. Karniadakis, “Conservative physics-
informed neural networks on discrete domains for conservation laws:
Applications to forward and inverse problems,” Comput. Methods Appl.
Mech. Eng. 365, 113028 (2020).

2IE. Kharazmi, Z. Zhang, and G. E. Karniadakis, “hp-VPINNs: Variational
physics-informed neural networks with domain decomposition,” Comput.
Methods Appl. Mech. Eng. 374, 113547 (2021).

22y, Dwivedi and B. Srinivasan, “Physics informed extreme learning machine
(PIELM)—A rapid method for the numerical solution of partial differential
equations,” Neurocomputing 391, 96-118 (2020).

23K. Li, K. Tang, T. Wu, and Q. Liao, “D3M: A deep domain decomposition
method for partial differential equations,” IEEE Access 8, 5283-5294
(2019).

247 L. Jin, Y. Liu, and L. J. Durlofsky, “Deep-learning-based surrogate model for
reservoir simulation with time-varying well controls,” J. Pet. Sci. Eng. 192,
107273 (2020).

25N. Wang, H. Chang, and D. Zhang, “Efficient uncertainty quantification for
dynamic subsurface flow with surrogate by theory-guided neural network,”
Comput. Methods Appl. Mech. Eng. 373, 113492 (2021).

26y, Zhu and N. Zabaras, “Bayesian deep convolutional encoder-decoder net-
works for surrogate modeling and uncertainty quantification,” J. Comput.
Phys. 366, 415-447 (2018).

27N. Geneva and N. Zabaras, “Modeling the dynamics of PDE systems with
physics-constrained deep auto-regressive networks,” J. Comput. Phys. 403,
109056 (2020).

28], Sun, H. Gao, S. Pan, and J.-X. Wang, “Surrogate modeling for fluid flows
based on physics-constrained deep learning without simulation data,” Comput.
Methods Appl. Mech. Eng. 361, 112732 (2020).

29Y. Zhu, N. Zabaras, P.-S. Koutsourelakis, and P. Perdikaris, “Physics-constrained
deep learning for high-dimensional surrogate modeling and uncertainty quantifi-
cation without labeled data,”]. Comput. Phys. 394, 56-81 (2019).

305, Chen, J. Viquerat, F. Heymes, and E. Hachem, “A twin-decoder structure for
incompressible laminar flow reconstruction with uncertainty estimation
around 2d obstacles,” Neural Comput. Appl. 34, 6289-6217 (2022).

31S. Heinz, “Minimal error partially resolving simulation methods for turbu-
lent flows: A dynamic machine learning approach,” Phys. Fluids 34, 051705
(2022).

32C, Gorlé, S. Zeoli, M. Emory, J. Larsson, and G. laccarino, “Epistemic uncer-
tainty quantification for Reynolds-averaged Navier-Stokes modeling of sepa-
rated flows over streamlined surfaces,” Phys. Fluids 31, 035101 (2019).

33]. Ling, A. Kurzawski, and J. Templeton, “Reynolds averaged turbulence model-
ling using deep neural networks with embedded invariance,” J. Fluid Mech.
807, 155-166 (2016).

34C. Rao, H. Sun, and Y. Liu, “Physics-informed deep learning for incompressible
laminar flows,” Theor. Appl. Mech. Lett. 10, 207-212 (2020).

35] -T. Hsieh, S. Zhao, S. Eismann, L. Mirabella, and S. Ermon, “Learning neural
PDE solvers with convergence guarantees,” arXiv:1906.01200 (2019).

%8R, Ranade, C. Hill, and J. Pathak, “DiscretizationNet: A machine-learning
based solver for Navier-Stokes equations using finite volume discretization,”
Comput. Methods Appl. Mech. Eng. 378, 113722 (2021).

57S. Patankar and D. Spalding, “A calculation procedure for heat, mass and
momentum transfer in three-dimensional parabolic flows,” Int. J. Heat Mass
Transfer 15, 1787-1806 (1972).

38y, Jasak, A. Jemcov, Z. Tukovic et al., “OpenFOAM: A C++ library for com-
plex physics simulations,” in Proceedings of the International Workshop on
Coupled Methods in Numerical Dynamics (IUC, Dubrovnik, Croatia, 2007),
Vol. 1000, pp. 1-20.

39R. Maulik, H. Sharma, S. Patel, B. Lusch, and E. Jennings, “Deploying deep
learning in OpenFOAM with tensorflow,” AIAA Paper No. 2021-1485, 2021,
p. 1485.

0], H. Ferziger, M. Peri¢, and R. L. Street, Computational Methods for Fluid
Dynamics (Springer, 2002), Vol. 3.

41y, Sekar, Q. Jiang, C. Shu, and B. C. Khoo, “Fast flow field prediction over air-
foils using deep learning approach,” Phys. Fluids 31, 057103 (2019).

“ZM. Xu, S. Song, X. Sun, and W. Zhang, “A convolutional strategy on
unstructured mesh for the adjoint vector modeling,” Phys. Fluids 33,
036115 (2021).

Phys. Fluids 34, 077111 (2022); doi: 10.1063/5.0097480
Published under an exclusive license by AIP Publishing

34, 077111-22

https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2020.109951
https://doi.org/10.1016/j.compfluid.2021.104973
https://doi.org/10.1063/1.5116415
https://doi.org/10.1103/PhysRevFluids.6.053902
https://doi.org/10.1063/5.0002051
https://doi.org/10.1063/5.0062546
https://doi.org/10.1063/5.0062546
https://doi.org/10.1063/1.5144661
https://doi.org/10.1063/5.0082741
https://doi.org/10.1186/s42774-021-00088-5
https://doi.org/10.1006/jcph.2002.7146
https://doi.org/10.1063/5.0064458
https://doi.org/10.1063/5.0078418
https://doi.org/10.1016/j.compfluid.2021.105239
https://doi.org/10.1016/j.jcp.2020.110080
https://doi.org/10.1016/j.jcp.2020.110080
https://doi.org/10.1063/5.0048771
https://doi.org/10.1115/1.4054494
http://arxiv.org/abs/1907.08967
https://doi.org/10.1016/j.cma.2020.113028
https://doi.org/10.1016/j.cma.2020.113028
https://doi.org/10.1016/j.cma.2020.113547
https://doi.org/10.1016/j.cma.2020.113547
https://doi.org/10.1016/j.neucom.2019.12.099
https://doi.org/10.1109/ACCESS.2019.2957200
https://doi.org/10.1016/j.petrol.2020.107273
https://doi.org/10.1016/j.cma.2020.113492
https://doi.org/10.1016/j.jcp.2018.04.018
https://doi.org/10.1016/j.jcp.2018.04.018
https://doi.org/10.1016/j.jcp.2019.109056
https://doi.org/10.1016/j.cma.2019.112732
https://doi.org/10.1016/j.cma.2019.112732
https://doi.org/10.1016/j.jcp.2019.05.024
https://doi.org/10.1007/s00521-021-06784-z
https://doi.org/10.1063/5.0095592
https://doi.org/10.1063/1.5086341
https://doi.org/10.1017/jfm.2016.615
https://doi.org/10.1016/j.taml.2020.01.039
http://arxiv.org/abs/1906.01200
https://doi.org/10.1016/j.cma.2021.113722
https://doi.org/10.1016/0017-9310(72)90054-3
https://doi.org/10.1016/0017-9310(72)90054-3
https://doi.org/10.1063/1.5094943
https://doi.org/10.1063/5.0044093
https://scitation.org/journal/phf

Physics of Fluids

"3]. Chen, E. Hachem, and J. Viquerat, “Graph neural networks for laminar flow
prediction around random two-dimensional shapes,” Phys. Fluids 33, 123607
(2021).

“*F, Ogoke, K. Meidani, A. Hashemi, and A. B. Farimani, “Graph convolutional
networks applied to unstructured flow field data,” Mach. Learn.: Sci. Technol.
2, 045020 (2021).

“5Y. Liu, W. Cao, W. Zhang, and Z. Xia, “Analysis on numerical stability and
convergence of Reynolds averaged Navier-Stokes simulations from the per-
spective of coupling modes,” Phys. Fluids 34, 015120 (2022).

“6H. Jasak, “Error analysis and estimation for the finite volume method with
applications to fluid flows,” Ph.D. thesis (University of London, Imperial
College London, 1996).

47D, P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv:1412.6980 (2014).

“8(. Ghia, K. N. Ghia, and C. Shin, “High-Re solutions for incompressible flow
using the Navier-Stokes equations and a multigrid method,” J. Comput. Phys.
48, 387-411 (1982).

“9p. Spalart and S. Allmaras, “A one-equation turbulence model for aerodynamic
flows,” AIAA Paper No. 1992-439, 1992, p. 439.

50y, Yakhot, S. Orszag, S. Thangam, T. Gatski, and C. Speziale, “Development of
turbulence models for shear flows by a double expansion technique,” Phys.
Fluids A 4, 1510-1520 (1992).

S'E. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering
applications,” ATAA J. 32, 1598-1605 (1994).

ARTICLE scitation.org/journal/phf

52].-L. Wu, H. Xiao, and E. Paterson, “Physics-informed machine learning
approach for augmenting turbulence models: A comprehensive framework,”
Phys. Rev. Fluids 3, 074602 (2018).

53]-X. Wang, J.-L. Wu, and H. Xiao, “Physics-informed machine learning
approach for reconstructing Reynolds stress modeling discrepancies based on
DNS data,” Phys. Rev. Fluids 2, 034603 (2017).

S4C. Sotgiu, B. Weigand, K. Semmler, and P. Wellinger, “Towards a general data-
driven explicit algebraic Reynolds stress prediction framework,” Int. J. Heat
Fluid Flow 79, 108454 (2019).

S5R. Maulik, H. Sharma, S. Patel, B. Lusch, and E. Jennings, “A turbulent eddy-
viscosity surrogate modeling framework for Reynolds-averaged Navier-Stokes
simulations,” Comput. Fluids 227, 104777 (2021).

563ee https://turbmodels.larc.nasa.gov/backstep_val_sa.html for Turbulence
Modeling Resource: 2D backward facing step, Spalart-Allmaras closure model;
accessed 16 October 2021.

57D. W. Stephens, A. Jemcov, and C. Sideroff, “Verification and validation of the
caelus library: Incompressible turbulence models,” in Proceedings of the Fluids
Engineering Division Summer Meeting (American Society of Mechanical
Engineers, 2017), Vol. 58059, p. VO1BT11A010.

581 Zhu, W. Zhang, J. Kou, and Y. Liu, “Machine learning methods for turbulence
modeling in subsonic flows around airfoils,” Phys. Fluids 31, 015105 (2019).

59X. Sun, W. Cao, Y. Liu, L. Zhu, and W. Zhang, “High Reynolds number airfoil
turbulence modeling method based on machine learning technique,” Comput.
Fluids 236, 105298 (2022).

Phys. Fluids 34, 077111 (2022); doi: 10.1063/5.0097480
Published under an exclusive license by AIP Publishing

34,077111-23

https://doi.org/10.1063/5.0064108
https://doi.org/10.1088/2632-2153/ac1fc9
https://doi.org/10.1063/5.0076273
http://arxiv.org/abs/1412.6980
https://doi.org/10.1016/0021-9991(82)90058-4
https://doi.org/10.1063/1.858424
https://doi.org/10.1063/1.858424
https://doi.org/10.2514/3.12149
https://doi.org/10.1103/PhysRevFluids.3.074602
https://doi.org/10.1103/PhysRevFluids.2.034603
https://doi.org/10.1016/j.ijheatfluidflow.2019.108454
https://doi.org/10.1016/j.ijheatfluidflow.2019.108454
https://doi.org/10.1016/j.compfluid.2020.104777
https://turbmodels.larc.nasa.gov/backstep_val_sa.html
https://doi.org/10.1063/1.5061693
https://doi.org/10.1016/j.compfluid.2021.105298
https://doi.org/10.1016/j.compfluid.2021.105298
https://scitation.org/journal/phf

	l
	s1
	s1A
	s1B
	s2
	d1
	d2
	d3
	d4
	s2A
	d5
	f1
	s2B
	f2
	d6
	d7
	s3
	s4
	s4A
	s4A1
	t3
	s4A2
	f3
	f4
	s5
	d8
	d9
	d9a
	d9b
	d9c
	d9d
	d9e
	d9f
	f5
	d9g
	d9h
	d9i
	d9j
	d9k
	d9l
	d9m
	f6
	s5A
	t4
	s5A1
	f7
	f8
	s5A2
	s5A3
	f9
	t1
	f10
	f11
	f12
	s6
	d10
	s6A
	t2
	f13
	t5
	f14
	s6A1
	s6A2
	d11
	s7
	f15
	f16
	s8
	s8A
	s8B
	f17
	f18
	s8C
	s9
	f19
	f20
	f21
	l
	app1
	app2
	s12A
	s12B
	f22
	t6
	app3
	f24
	f23
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45
	c46
	c47
	c48
	c49
	c50
	c51
	c52
	c53
	c54
	c55
	c56
	c57
	c58
	c59

